These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 14508677)

  • 21. Control of continuous fed-batch fermentation process using neural network based model predictive controller.
    Kiran AU; Jana AK
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):801-8. PubMed ID: 19259705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring and control of Gluconacetobacter xylinus fed-batch cultures using in situ mid-IR spectroscopy.
    Kornmann H; Valentinotti S; Duboc P; Marison I; von Stockar U
    J Biotechnol; 2004 Sep; 113(1-3):231-45. PubMed ID: 15380658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ethanol production from glucose and dilute-acid hydrolyzates by encapsulated S. cerevisiae.
    Talebnia F; Niklasson C; Taherzadeh MJ
    Biotechnol Bioeng; 2005 May; 90(3):345-53. PubMed ID: 15772948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization.
    Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An innovative consecutive batch fermentation process for very high gravity ethanol fermentation with self-flocculating yeast.
    Li F; Zhao XQ; Ge XM; Bai FW
    Appl Microbiol Biotechnol; 2009 Oct; 84(6):1079-86. PubMed ID: 19475405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time viable-cell mass monitoring in high-cell-density fed-batch glutathione fermentation by Saccharomyces cerevisiae T65 in industrial complex medium.
    Xiong ZQ; Guo MJ; Guo YX; Chu J; Zhuang YP; Zhang SL
    J Biosci Bioeng; 2008 Apr; 105(4):409-13. PubMed ID: 18499059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kalman filter based glucose control at small set points during fed-batch cultivation of Saccharomyces cerevisiae.
    Arndt M; Hitzmann B
    Biotechnol Prog; 2004; 20(1):377-83. PubMed ID: 14763866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [High-cell density cultivation of recombinant Escherichia coli for production of TRAIL by using a 2-stage feeding strategy].
    Zhang Y; Shen YL; Xia XX; Sun AY; Wei DZ; Zhou JS; Zhang GJ; Wang LH; Jiao BH
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):408-13. PubMed ID: 15971615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models.
    Hjersted JL; Henson MA
    Biotechnol Prog; 2006; 22(5):1239-48. PubMed ID: 17022660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fed-batch production of D-ribose from sugar mixtures by transketolase-deficient Bacillus subtilis SPK1.
    Park YC; Kim SG; Park K; Lee KH; Seo JH
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):297-302. PubMed ID: 15375635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calorimetric control of fed-batch fermentations.
    Randolph TW; Marison IW; Martens DE; von Stockar U
    Biotechnol Bioeng; 1990 Oct; 36(7):678-84. PubMed ID: 18597259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fed-batch culture strategy for high yield of baker's yeast with high fermentative activity.
    Li Y; Chen J; Song Q; Lun S; Katakura Y
    Chin J Biotechnol; 1997; 13(2):105-13. PubMed ID: 9343709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intracellular pH-based controlled cultivation of yeast cells: II. cultivation methodology.
    Sureshkumar GK; Mutharasan R
    Biotechnol Bioeng; 1993 Jul; 42(3):295-302. PubMed ID: 18613012
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J
    J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lantana camara for fuel ethanol production using thermotolerant yeast.
    Pasha C; Nagavalli M; Rao LV
    Lett Appl Microbiol; 2007 Jun; 44(6):666-72. PubMed ID: 17576231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A process for the production of human proinsulin in Saccharomyces cerevisiae.
    Tøttrup HV; Carlsen S
    Biotechnol Bioeng; 1990 Feb; 35(4):339-48. PubMed ID: 18592528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-cell-density fermentation for ergosterol production by Saccharomyces cerevisiae.
    Shang F; Wen S; Wang X; Tan T
    J Biosci Bioeng; 2006 Jan; 101(1):38-41. PubMed ID: 16503289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On-line control of fed-batch fermentation of dilute-acid hydrolyzates.
    Taherzadeh MJ; Niklasson C; Lidén G
    Biotechnol Bioeng; 2000 Aug; 69(3):330-8. PubMed ID: 10861413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials.
    Wee YJ; Ryu HW
    Bioresour Technol; 2009 Sep; 100(18):4262-70. PubMed ID: 19394215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.