These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 1450948)
1. Systemic morphine reduces GABA release in the lateral but not the medial portion of the midbrain periaqueductal gray of the rat. Renno WM; Mullett MA; Beitz AJ Brain Res; 1992 Oct; 594(2):221-32. PubMed ID: 1450948 [TBL] [Abstract][Full Text] [Related]
2. Peripheral inflammation is associated with decreased veratridine-induced release of GABA in the rat ventrocaudal periaqueductal gray: microdialysis study. Renno WM; Beitz AJ J Neurol Sci; 1999 Mar; 163(2):105-10. PubMed ID: 10371070 [TBL] [Abstract][Full Text] [Related]
3. Microdialysis of excitatory amino acids in the periaqueductal gray of the rat after unilateral peripheral inflammation. Renno WM Amino Acids; 1998; 14(4):319-31. PubMed ID: 9871476 [TBL] [Abstract][Full Text] [Related]
4. Construction of 1 mm microdialysis probe for amino acids dialysis in rats. Renno WM; Mullet MA; Williams FG; Beitz AJ J Neurosci Methods; 1998 Feb; 79(2):217-28. PubMed ID: 9543488 [TBL] [Abstract][Full Text] [Related]
5. Opioid-induced release of neurotensin in the periaqueductal gray matter of freely moving rats. Stiller CO; Gustafsson H; Fried K; Brodin E Brain Res; 1997 Nov; 774(1-2):149-58. PubMed ID: 9452203 [TBL] [Abstract][Full Text] [Related]
6. Local administration of morphine decreases the extracellular level of GABA in the periaqueductal gray matter of freely moving rats. Stiller CO; Bergquist J; Beck O; Ekman R; Brodin E Neurosci Lett; 1996 May; 209(3):165-8. PubMed ID: 8736636 [TBL] [Abstract][Full Text] [Related]
7. Basal release of Met-enkephalin and neurotensin in the ventrolateral periaqueductal gray matter of the rat: a microdialysis study of antinociceptive circuits. Williams FG; Mullet MA; Beitz AJ Brain Res; 1995 Sep; 690(2):207-16. PubMed ID: 8535838 [TBL] [Abstract][Full Text] [Related]
8. Neurochemical effects of motor cortex stimulation in the periaqueductal gray during neuropathic pain. de Andrade EM; Martinez RCR; Pagano RL; Lopes PSS; Auada AVV; Gouveia FV; Antunes GF; Assis DV; Lebrun I; Fonoff ET J Neurosurg; 2020 Jan; 132(1):239-251. PubMed ID: 30611141 [TBL] [Abstract][Full Text] [Related]
9. Differential roles of mGlu8 receptors in the regulation of glutamate and gamma-aminobutyric acid release at periaqueductal grey level. Marabese I; de Novellis V; Palazzo E; Mariani L; Siniscalco D; Rodella L; Rossi F; Maione S Neuropharmacology; 2005; 49 Suppl 1():157-66. PubMed ID: 16084932 [TBL] [Abstract][Full Text] [Related]
10. Periaqueductal gray matter glutamate and GABA decrease following subcutaneous formalin injection in rat. Maione S; Marabese I; Oliva P; de Novellis V; Stella L; Rossi F; Filippelli A; Rossi F Neuroreport; 1999 May; 10(7):1403-7. PubMed ID: 10380954 [TBL] [Abstract][Full Text] [Related]
11. Extracellular gamma-aminobutyric acid levels in the rat caudate-putamen: monitoring the neuronal and glial contribution by intracerebral microdialysis. Campbell K; Kalén P; Lundberg C; Wictorin K; Rosengren E; Björklund A Brain Res; 1993 Jun; 614(1-2):241-50. PubMed ID: 8348317 [TBL] [Abstract][Full Text] [Related]
12. Group I metabotropic glutamate receptors modulate glutamate and gamma-aminobutyric acid release in the periaqueductal grey of rats. de Novellis V; Marabese I; Palazzo E; Rossi F; Berrino L; Rodella L; Bianchi R; Rossi F; Maione S Eur J Pharmacol; 2003 Feb; 462(1-3):73-81. PubMed ID: 12591098 [TBL] [Abstract][Full Text] [Related]
13. Periaqueductal gray metabotropic glutamate receptor subtype 7 and 8 mediate opposite effects on amino acid release, rostral ventromedial medulla cell activities, and thermal nociception. Marabese I; Rossi F; Palazzo E; de Novellis V; Starowicz K; Cristino L; Vita D; Gatta L; Guida F; Di Marzo V; Rossi F; Maione S J Neurophysiol; 2007 Jul; 98(1):43-53. PubMed ID: 17507496 [TBL] [Abstract][Full Text] [Related]
14. A comparative study of excitatory and inhibitory amino acids in three different brainstem nuclei. Renno WM; Alkhalaf M; Mousa A; Kanaan RA Neurochem Res; 2008 Jan; 33(1):150-9. PubMed ID: 17940899 [TBL] [Abstract][Full Text] [Related]
15. Behavioral evidence linking opioid-sensitive GABAergic neurons in the ventrolateral periaqueductal gray to morphine tolerance. Morgan MM; Clayton CC; Lane DA Neuroscience; 2003; 118(1):227-32. PubMed ID: 12676152 [TBL] [Abstract][Full Text] [Related]
16. GABAergic modulation of hippocampal glutamatergic neurons: an in vivo microdialysis study. Tanaka S; Tsuchida A; Kiuchi Y; Oguchi K; Numazawa S; Yoshida T Eur J Pharmacol; 2003 Mar; 465(1-2):61-7. PubMed ID: 12650834 [TBL] [Abstract][Full Text] [Related]
18. The effect of GABA and its antagonists on midbrain periaqueductal gray neurons in the rat. Behbehani MM; Jiang M; Chandler SD; Ennis M Pain; 1990 Feb; 40(2):195-204. PubMed ID: 2308765 [TBL] [Abstract][Full Text] [Related]
19. Relationship of glutamate and aspartate to the periaqueductal gray-raphe magnus projection: analysis using immunocytochemistry and microdialysis. Beitz AJ J Histochem Cytochem; 1990 Dec; 38(12):1755-65. PubMed ID: 1701457 [TBL] [Abstract][Full Text] [Related]
20. Amino acid neurotransmitters in nucleus tractus solitarius: an in vivo microdialysis study. Sved AF; Curtis JT J Neurochem; 1993 Dec; 61(6):2089-98. PubMed ID: 7902420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]