BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 14509572)

  • 1. Roles of the cerebellum in pursuit-vestibular interactions.
    Fukushima K
    Cerebellum; 2003; 2(3):223-32. PubMed ID: 14509572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation.
    Shinmei Y; Yamanobe T; Fukushima J; Fukushima K
    J Neurophysiol; 2002 Apr; 87(4):1836-49. PubMed ID: 11929905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertical Purkinje cells of the monkey floccular lobe: simple-spike activity during pursuit and passive whole body rotation.
    Fukushima K; Fukushima J; Kaneko CR; Fuchs AF
    J Neurophysiol; 1999 Aug; 82(2):787-803. PubMed ID: 10444677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of Purkinje cells in the oculomotor vermis of monkeys during smooth pursuit eye movements and saccades: comparison with floccular complex.
    Raghavan RT; Lisberger SG
    J Neurophysiol; 2017 Aug; 118(2):986-1001. PubMed ID: 28515286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the cerebellar flocculus region in the coordination of eye and head movements during gaze pursuit.
    Belton T; McCrea RA
    J Neurophysiol; 2000 Sep; 84(3):1614-26. PubMed ID: 10980031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the cerebellar flocculus region in cancellation of the VOR during passive whole body rotation.
    Belton T; McCrea RA
    J Neurophysiol; 2000 Sep; 84(3):1599-613. PubMed ID: 10980030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural basis for motor learning in the vestibuloocular reflex of primates. II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocculus and ventral paraflocculus.
    Lisberger SG; Pavelko TA; Bronte-Stewart HM; Stone LS
    J Neurophysiol; 1994 Aug; 72(2):954-73. PubMed ID: 7983548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR.
    Rambold H; Churchland A; Selig Y; Jasmin L; Lisberger SG
    J Neurophysiol; 2002 Feb; 87(2):912-24. PubMed ID: 11826056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of the cerebellar dorsal vermis in vergence eye movements in monkeys.
    Nitta T; Akao T; Kurkin S; Fukushima K
    Cereb Cortex; 2008 May; 18(5):1042-57. PubMed ID: 17716988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vestibular-pursuit interactions: gaze-velocity and target-velocity signals in the monkey frontal eye fields.
    Fukushima K; Fukushima J; Sato T
    Ann N Y Acad Sci; 1999 May; 871():248-59. PubMed ID: 10372076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of the cerebellar flocculus to gaze control during active head movements.
    Belton T; McCrea RA
    J Neurophysiol; 1999 Jun; 81(6):3105-9. PubMed ID: 10368427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain stem pursuit pathways: dissociating visual, vestibular, and proprioceptive inputs during combined eye-head gaze tracking.
    Roy JE; Cullen KE
    J Neurophysiol; 2003 Jul; 90(1):271-90. PubMed ID: 12843311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the posterior vermis of monkey cerebellum in smooth-pursuit eye movement control. II. Target velocity-related Purkinje cell activity.
    Suzuki DA; Keller EL
    J Neurophysiol; 1988 Jan; 59(1):19-40. PubMed ID: 3343601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Representation of neck velocity and neck-vestibular interactions in pursuit neurons in the simian frontal eye fields.
    Fukushima K; Akao T; Saito H; Kurkin SA; Fukushima J; Peterson BW
    Cereb Cortex; 2010 May; 20(5):1195-207. PubMed ID: 19710358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebellar flocculus and ventral paraflocculus Purkinje cell activity during predictive and visually driven pursuit in monkey.
    Suh M; Leung HC; Kettner RE
    J Neurophysiol; 2000 Oct; 84(4):1835-50. PubMed ID: 11024076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive changes in smooth pursuit eye movements induced by cross-axis pursuit-vestibular interaction training in monkeys.
    Fukushima K; Wells SG; Yamanobe T; Takeichi N; Shinmei Y; Fukushima J
    Exp Brain Res; 2001 Aug; 139(4):473-81. PubMed ID: 11534872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses during eye movements of brain stem neurons that receive monosynaptic inhibition from the flocculus and ventral paraflocculus in monkeys.
    Lisberger SG; Pavelko TA; Broussard DM
    J Neurophysiol; 1994 Aug; 72(2):909-27. PubMed ID: 7983546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple spike responses of gaze velocity Purkinje cells in the floccular lobe of the monkey during the onset and offset of pursuit eye movements.
    Krauzlis RJ; Lisberger SG
    J Neurophysiol; 1994 Oct; 72(4):2045-50. PubMed ID: 7823119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes.
    Stone LS; Lisberger SG
    J Neurophysiol; 1990 May; 63(5):1241-61. PubMed ID: 2358872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of learning.
    Lisberger SG
    J Neurophysiol; 1994 Aug; 72(2):974-98. PubMed ID: 7983549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.