BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 14509658)

  • 1. An animal model to discern torsin function: suppression of protein aggregation in C. elegans.
    Caldwell GA; Cao S; Gelwix CC; Sexton EG; Caldwell KA
    Adv Neurol; 2004; 94():79-85. PubMed ID: 14509658
    [No Abstract]   [Full Text] [Related]  

  • 2. Suppression of polyglutamine-induced protein aggregation in Caenorhabditis elegans by torsin proteins.
    Caldwell GA; Cao S; Sexton EG; Gelwix CC; Bevel JP; Caldwell KA
    Hum Mol Genet; 2003 Feb; 12(3):307-19. PubMed ID: 12554684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy.
    Janiesch PC; Kim J; Mouysset J; Barikbin R; Lochmüller H; Cassata G; Krause S; Hoppe T
    Nat Cell Biol; 2007 Apr; 9(4):379-90. PubMed ID: 17369820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of evolutionarily conserved promoter elements and amino acids required for function of the C. elegans beta-catenin homolog BAR-1.
    Natarajan L; Jackson BM; Szyleyko E; Eisenmann DM
    Dev Biol; 2004 Aug; 272(2):536-57. PubMed ID: 15282167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C. elegans daf-6 encodes a patched-related protein required for lumen formation.
    Perens EA; Shaham S
    Dev Cell; 2005 Jun; 8(6):893-906. PubMed ID: 15935778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Caenorhabditis elegans DDX-23, a homolog of yeast splicing factor PRP28, is required for the sperm-oocyte switch and differentiation of various cell types.
    Konishi T; Uodome N; Sugimoto A
    Dev Dyn; 2008 Sep; 237(9):2367-77. PubMed ID: 18729217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. eor-1 and eor-2 are required for cell-specific apoptotic death in C. elegans.
    Hoeppner DJ; Spector MS; Ratliff TM; Kinchen JM; Granat S; Lin SC; Bhusri SS; Conradt B; Herman MA; Hengartner MO
    Dev Biol; 2004 Oct; 274(1):125-38. PubMed ID: 15355793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dyf-3 gene encodes a novel protein required for sensory cilium formation in Caenorhabditis elegans.
    Murayama T; Toh Y; Ohshima Y; Koga M
    J Mol Biol; 2005 Feb; 346(3):677-87. PubMed ID: 15713455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The FAR proteins of parasitic nematodes: their possible involvement in the pathogenesis of infection and the use of Caenorhabditis elegans as a model system to evaluate their function.
    Garofalo A; Kennedy MW; Bradley JE
    Med Microbiol Immunol; 2003 Feb; 192(1):47-52. PubMed ID: 12592563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNP-1 (ARRD-17), a novel substrate of calcineurin, is critical for modulation of egg-laying and locomotion in response to food and lysine sensation in Caenorhabditis elegans.
    Jee C; Choi TW; Kalichamy K; Yee JZ; Song HO; Ji YJ; Lee J; Lee JI; L'Etoile ND; Ahnn J; Lee SK
    J Mol Biol; 2012 Mar; 417(3):165-78. PubMed ID: 22300764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Notch-GATA synergy promotes endoderm-specific expression of ref-1 in C. elegans.
    Neves A; English K; Priess JR
    Development; 2007 Dec; 134(24):4459-68. PubMed ID: 18003741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The slit receptor EVA-1 coactivates a SAX-3/Robo mediated guidance signal in C. elegans.
    Fujisawa K; Wrana JL; Culotti JG
    Science; 2007 Sep; 317(5846):1934-8. PubMed ID: 17901337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CDC-14 phosphatase controls developmental cell-cycle arrest in C. elegans.
    Saito RM; Perreault A; Peach B; Satterlee JS; van den Heuvel S
    Nat Cell Biol; 2004 Aug; 6(8):777-83. PubMed ID: 15247923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel actin barbed-end-capping activity in EPS-8 regulates apical morphogenesis in intestinal cells of Caenorhabditis elegans.
    Croce A; Cassata G; Disanza A; Gagliani MC; Tacchetti C; Malabarba MG; Carlier MF; Scita G; Baumeister R; Di Fiore PP
    Nat Cell Biol; 2004 Dec; 6(12):1173-9. PubMed ID: 15558032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three new isoforms of Caenorhabditis elegans UNC-89 containing MLCK-like protein kinase domains.
    Small TM; Gernert KM; Flaherty DB; Mercer KB; Borodovsky M; Benian GM
    J Mol Biol; 2004 Sep; 342(1):91-108. PubMed ID: 15313609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of RGS protein function in Caenorhabditis elegans.
    Chase DL; Koelle MR
    Methods Enzymol; 2004; 389():305-20. PubMed ID: 15313573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery and characterization of a conserved pigment dispersing factor-like neuropeptide pathway in Caenorhabditis elegans.
    Janssen T; Husson SJ; Meelkop E; Temmerman L; Lindemans M; Verstraelen K; Rademakers S; Mertens I; Nitabach M; Jansen G; Schoofs L
    J Neurochem; 2009 Oct; 111(1):228-41. PubMed ID: 19686386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial division in Caenorhabditis elegans.
    Gandre S; van der Bliek AM
    Methods Mol Biol; 2007; 372():485-501. PubMed ID: 18314747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a bicistronic vector for the co-expression of two genes in Caenorhabditis elegans using a newly identified IRES.
    Li D; Wang M
    Biotechniques; 2012 Mar; 52(3):173-6. PubMed ID: 22401550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissection of cis-regulatory elements in the C. elegans Hox gene egl-5 promoter.
    Teng Y; Girard L; Ferreira HB; Sternberg PW; Emmons SW
    Dev Biol; 2004 Dec; 276(2):476-92. PubMed ID: 15581880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.