BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 14509712)

  • 21. The influence of precursors and treatment process on the formation of Iodo-THMs in Canadian drinking water.
    Tugulea AM; Aranda-Rodriguez R; Bérubé D; Giddings M; Lemieux F; Hnatiw J; Dabeka L; Breton F
    Water Res; 2018 Mar; 130():215-223. PubMed ID: 29223782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation of iodinated trihalomethanes during chlorination of amino acid in waters.
    Li C; Lin Q; Dong F; Li Y; Luo F; Zhang K
    Chemosphere; 2019 Feb; 217():355-363. PubMed ID: 30419389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. I-THM formation and speciation: preformed monochloramine versus prechlorination followed by ammonia addition.
    Jones DB; Saglam A; Triger A; Song H; Karanfil T
    Environ Sci Technol; 2011 Dec; 45(24):10429-37. PubMed ID: 22050596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater.
    Szczuka A; Parker KM; Harvey C; Hayes E; Vengosh A; Mitch WA
    Water Res; 2017 Oct; 122():633-644. PubMed ID: 28646800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Factorial analysis of the trihalomethane formation in the reaction of colloidal, hydrophobic, and transphilic fractions of DOM with free chlorine.
    Platikanov S; Tauler R; Rodrigues PM; Antunes MC; Pereira D; Esteves da Silva JC
    Environ Sci Pollut Res Int; 2010 Sep; 17(8):1389-400. PubMed ID: 20419477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors.
    Boyer TH; Singer PC
    Water Res; 2005 Apr; 39(7):1265-76. PubMed ID: 15862326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of iodinated trihalomethane formation from chlorine, chlorine dioxide and potassium permanganate oxidation processes.
    Zhang TY; Xu B; Hu CY; Lin YL; Lin L; Ye T; Tian FX
    Water Res; 2015 Jan; 68():394-403. PubMed ID: 25462746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trihalomethanes formation in Iranian water supply systems: predicting and modeling.
    Babaei AA; Atari L; Ahmadi M; Ahmadiangali K; Zamanzadeh M; Alavi N
    J Water Health; 2015 Sep; 13(3):859-69. PubMed ID: 26322772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling and optimization of trihalomethanes formation potential of surface water (a drinking water source) using Box-Behnken design.
    Singh KP; Rai P; Pandey P; Sinha S
    Environ Sci Pollut Res Int; 2012 Jan; 19(1):113-27. PubMed ID: 21695538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of NOM molecular size on iodo-trihalomethane formation during chlorination and chloramination.
    Zhang J; Chen DD; Li L; Li WW; Mu Y; Yu HQ
    Water Res; 2016 Oct; 102():533-541. PubMed ID: 27423047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water.
    Pavelic P; Nicholson BC; Dillon PJ; Barry KE
    J Contam Hydrol; 2005 May; 77(4):351-73. PubMed ID: 15940842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effects of bromide and ferric ions on formation of tri-halomethanes during disinfection of drinking water by chlorine].
    Zhu ZL; Wang J; Ge YX; Ma HM; Zhao JF
    Huan Jing Ke Xue; 2007 Jun; 28(6):1264-7. PubMed ID: 17674733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water.
    Pavelic P; Nicholson BC; Dillon PJ; Barry KE
    J Contam Hydrol; 2005 Mar; 77(1-2):119-41. PubMed ID: 15722175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of bromide ion effects on disinfection by-products formation and speciation in an Istanbul water supply.
    Uyak V; Toroz I
    J Hazard Mater; 2007 Oct; 149(2):445-51. PubMed ID: 17517472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insight into the formation of iodinated trihalomethanes during chlorination, monochloramination, and dichloramination of iodide-containing water.
    Zhang S; Lin YL; Zhang TY; Hu CY; Liu Z; Dong ZY; Xu MY; Xu B
    J Environ Sci (China); 2022 Jul; 117():285-294. PubMed ID: 35725081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Factors affecting trihalomethane formation and speciation during chlorination of reclaimed water.
    Ma D; Gao B; Wang Y; Yue Q; Li Q
    Water Sci Technol; 2015; 72(4):616-22. PubMed ID: 26247761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chlorination byproduct formation in the presence of humic acid, model nitrogenous organic compounds, ammonia, and bromide.
    Yang X; Shang C
    Environ Sci Technol; 2004 Oct; 38(19):4995-5001. PubMed ID: 15506191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chlorination of natural organic matter: kinetics of chlorination and of THM formation.
    Gallard H; von GU
    Water Res; 2002 Jan; 36(1):65-74. PubMed ID: 11766819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trihalomethane occurrence in chlorinated reclaimed water at full-scale wastewater treatment plants in NE Spain.
    Matamoros V; Mujeriego R; Bayona JM
    Water Res; 2007 Aug; 41(15):3337-44. PubMed ID: 17585988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of the formation of chlorination by-products in water rich in bromide and organic matter content.
    Nikolaou AD
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(11-12):2835-53. PubMed ID: 15533008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.