These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 14510460)

  • 1. Rational combination of strategies to achieve synergistic stabilization of triplex.
    Torigoe H; Akaike T; Maruyama A
    Nucleic Acids Res Suppl; 2003; (3):221-2. PubMed ID: 14510460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic stabilization of triplex by combination of comb-type cationic copolymer and oligo-N3'-->P5' phosphoramidates.
    Torigoe H; Akaike T; Maruyama A
    Nucleic Acids Res Suppl; 2001; (1):195-6. PubMed ID: 12836331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic stabilization of nucleic acid assembly by 2'-O,4'-C-methylene-bridged nucleic acid modification and additions of comb-type cationic copolymers.
    Torigoe H; Maruyama A; Obika S; Imanishi T; Katayama T
    Biochemistry; 2009 Apr; 48(15):3545-53. PubMed ID: 19170613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic stabilization of nucleic acid assembly by oligo-N3'-->P5' phosphoramidate modification and additions of comb-type cationic copolymers.
    Torigoe H; Maruyama A
    J Am Chem Soc; 2005 Feb; 127(6):1705-10. PubMed ID: 15701004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic and kinetic effects of N3'-->P5' phosphoramidate modification on pyrimidine motif triplex DNA formation.
    Torigoe H
    Biochemistry; 2001 Jan; 40(4):1063-9. PubMed ID: 11170429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promotion of triplex formation by N3'-->P5' phosphoramidate modification: thermodynamic and kinetic studies.
    Torigoe H
    Nucleic Acids Res Suppl; 2001; (1):57-8. PubMed ID: 12836262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic stabilization of triplex by combination of comb-type cationic copolymer and 2',4'-BNA.
    Katayama T; Maruyama A; Obika S; Imanishi T; Torigoe H
    Nucleic Acids Symp Ser (Oxf); 2004; (48):139-40. PubMed ID: 17150517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2'-O,4'-C-aminomethylene-bridged nucleic acid modification with enhancement of nuclease resistance promotes pyrimidine motif triplex nucleic acid formation at physiological pH.
    Torigoe H; Rahman SM; Takuma H; Sato N; Imanishi T; Obika S; Sasaki K
    Chemistry; 2011 Feb; 17(9):2742-51. PubMed ID: 21264967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic and kinetic effects of morpholino modification on pyrimidine motif triplex nucleic acid formation under physiological condition.
    Torigoe H; Sasaki K; Katayama T
    J Biochem; 2009 Aug; 146(2):173-83. PubMed ID: 19351708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(L-lysine)-graft-dextran copolymer promotes pyrimidine motif triplex DNA formation at physiological pH. Thermodynamic and kinetic studies.
    Torigoe H; Ferdous A; Watanabe H; Akaike T; Maruyama A
    J Biol Chem; 1999 Mar; 274(10):6161-7. PubMed ID: 10037700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of intermolecular purine-purine-pyrimidine triple helix stabilization by comb-type polylysine graft copolymer at physiologic potassium concentration.
    Ferdous A; Akaike T; Maruyama A
    Bioconjug Chem; 2000; 11(4):520-6. PubMed ID: 10898573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promotion mechanism of triplex DNA formation by comb-type polycations: thermodynamic analyses of sequence specificity and ionic strength dependence.
    Torigoe H; Akaike T; Maruyama A
    Nucleic Acids Symp Ser; 1999; (42):137-8. PubMed ID: 10780417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2'-O,4'-C-ethylene bridged nucleic acid modification enhances pyrimidine motif triplex-forming ability under physiological condition.
    Torigoe H; Sato N; Nagasawa N
    J Biochem; 2012 Jul; 152(1):17-26. PubMed ID: 22563101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triplex formation using ODN conjugates with polycation comb-type copolymer.
    Ueda M; Saito M; Ishihara T; Akaike T; Maruyama A
    Nucleic Acids Symp Ser; 2000; (44):209-10. PubMed ID: 12903342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective and Robust Stabilization of Triplex DNA Structures Using Cationic Comb-type Copolymers.
    Yamayoshi A; Miyoshi D; Zouzumi YK; Matsuyama Y; Ariyoshi J; Shimada N; Murakami A; Wada T; Maruyama A
    J Phys Chem B; 2017 Apr; 121(16):4015-4022. PubMed ID: 28362093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2'-O,4'-C-methylene bridged nucleic acid modification promotes pyrimidine motif triplex DNA formation at physiological pH: thermodynamic and kinetic studies.
    Torigoe H; Hari Y; Sekiguchi M; Obika S; Imanishi T
    J Biol Chem; 2001 Jan; 276(4):2354-60. PubMed ID: 11035027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical modification of triplex-forming oligonucleotide to promote pyrimidine motif triplex formation at physiological pH.
    Torigoe H; Nakagawa O; Imanishi T; Obika S; Sasaki K
    Biochimie; 2012 Apr; 94(4):1032-40. PubMed ID: 22245184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comb-type copolymer: stabilization of triplex DNA and possible application in antigene strategy.
    Ferdous A; Watanabe H; Akaike T; Maruyama A
    J Pharm Sci; 1998 Nov; 87(11):1400-5. PubMed ID: 9811497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(L-lysine)-graft-dextran copolymer: amazing effects on triplex stabilization under physiological pH and ionic conditions (in vitro).
    Ferdous A; Watanabe H; Akaike T; Maruyama A
    Nucleic Acids Res; 1998 Sep; 26(17):3949-54. PubMed ID: 9705503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. alpha-Oligodeoxyribonucleotide N3'-->P5' phosphoramidates: synthesis and duplex formation.
    Pongracz K; Gryaznov SM
    Nucleic Acids Res; 1998 Feb; 26(4):1099-106. PubMed ID: 9461474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.