These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 14511813)

  • 1. A dynamic recurrent neural network for multiple muscles electromyographic mapping to elevation angles of the lower limb in human locomotion.
    Cheron G; Leurs F; Bengoetxea A; Draye JP; Destrée M; Dan B
    J Neurosci Methods; 2003 Oct; 129(2):95-104. PubMed ID: 14511813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of the physiological actions of the triphasic EMG pattern by a dynamic recurrent neural network.
    Cheron G; Cebolla AM; Bengoetxea A; Leurs F; Dan B
    Neurosci Lett; 2007 Mar; 414(2):192-6. PubMed ID: 17224236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial neural network model for the generation of muscle activation patterns for human locomotion.
    Prentice SD; Patla AE; Stacey DA
    J Electromyogr Kinesiol; 2001 Feb; 11(1):19-30. PubMed ID: 11166605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shaping appropriate locomotive motor output through interlimb neural pathway within spinal cord in humans.
    Kawashima N; Nozaki D; Abe MO; Nakazawa K
    J Neurophysiol; 2008 Jun; 99(6):2946-55. PubMed ID: 18450579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.
    Grasso R; Zago M; Lacquaniti F
    J Neurophysiol; 2000 Jan; 83(1):288-300. PubMed ID: 10634872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple artificial neural network models can generate basic muscle activity patterns for human locomotion at different speeds.
    Prentice SD; Patla AE; Stacey DA
    Exp Brain Res; 1998 Dec; 123(4):474-80. PubMed ID: 9870606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early emergence of temporal co-ordination of lower limb segments elevation angles in human locomotion.
    Cheron G; Bengoetxea A; Bouillot E; Lacquaniti F; Dan B
    Neurosci Lett; 2001 Aug; 308(2):123-7. PubMed ID: 11457575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromechanical control of locomotion in the rat.
    Thota AK; Watson SC; Knapp E; Thompson B; Jung R
    J Neurotrauma; 2005 Apr; 22(4):442-65. PubMed ID: 15853462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor coordination in patients with Hereditary Spastic Paraplegia.
    Martino G; Ivanenko Y; Serrao M; Ranavolo A; Draicchio F; Casali C; Lacquaniti F
    J Electromyogr Kinesiol; 2019 Apr; 45():61-69. PubMed ID: 30836301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-dependent electromyographic activity of the lower-limb muscles of a patient with clinically complete spinal cord injury during orthotic gait.
    Kojima N; Nakazawa K; Yamamoto SI; Yano H
    Exp Brain Res; 1998 May; 120(1):139-42. PubMed ID: 9628413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor patterns for human gait: backward versus forward locomotion.
    Grasso R; Bianchi L; Lacquaniti F
    J Neurophysiol; 1998 Oct; 80(4):1868-85. PubMed ID: 9772246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.
    Hoellinger T; Petieau M; Duvinage M; Castermans T; Seetharaman K; Cebolla AM; Bengoetxea A; Ivanenko Y; Dan B; Cheron G
    Front Comput Neurosci; 2013; 7():70. PubMed ID: 23755009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of an unstable shoe construction on lower extremity gait characteristics.
    Nigg B; Hintzen S; Ferber R
    Clin Biomech (Bristol, Avon); 2006 Jan; 21(1):82-8. PubMed ID: 16209901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the segment weight dynamic movement method to the normalization of gait EMG amplitude.
    Nishijima Y; Kato T; Yoshizawa M; Miyashita M; Iida H
    J Electromyogr Kinesiol; 2010 Jun; 20(3):550-7. PubMed ID: 19699658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of sensory, spinal, and volitional descending inputs in regulation of human locomotion.
    Gerasimenko Y; Gad P; Sayenko D; McKinney Z; Gorodnichev R; Puhov A; Moshonkina T; Savochin A; Selionov V; Shigueva T; Tomilovskaya E; Kozlovskaya I; Edgerton VR
    J Neurophysiol; 2016 Jul; 116(1):98-105. PubMed ID: 27075538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotor kinematics and EMG activity during quadrupedal versus bipedal gait in the Japanese macaque.
    Higurashi Y; Maier MA; Nakajima K; Morita K; Fujiki S; Aoi S; Mori F; Murata A; Inase M
    J Neurophysiol; 2019 Jul; 122(1):398-412. PubMed ID: 31116630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Features of hand-foot crawling behavior in human adults.
    Maclellan MJ; Ivanenko YP; Cappellini G; Sylos Labini F; Lacquaniti F
    J Neurophysiol; 2012 Jan; 107(1):114-25. PubMed ID: 21975454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dynamic neural network identification of electromyography and arm trajectory relationship during complex movements.
    Cheron G; Draye JP; Bourgeios M; Libert G
    IEEE Trans Biomed Eng; 1996 May; 43(5):552-8. PubMed ID: 8849468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability study of tibialis posterior and selected leg muscle EMG and multi-segment foot kinematics in rheumatoid arthritis associated pes planovalgus.
    Barn R; Rafferty D; Turner DE; Woodburn J
    Gait Posture; 2012 Jul; 36(3):567-71. PubMed ID: 22721819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal coordination of arm and leg movements during human locomotion.
    Dietz V; Fouad K; Bastiaanse CM
    Eur J Neurosci; 2001 Dec; 14(11):1906-14. PubMed ID: 11860485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.