BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 14511817)

  • 1. Wavelet analysis can sensitively describe dynamics of ethanol evoked local field potentials of the slug (Limax marginatus) brain.
    Schütt A; Ito I; Rosso OA; Figliola A
    J Neurosci Methods; 2003 Oct; 129(2):135-50. PubMed ID: 14511817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A discovery of new features of gastropod local field potentials by application of wavelet tools.
    Schütt A; Rosso OA; Figliola A
    J Neurosci Methods; 2002 Sep; 119(1):89-104. PubMed ID: 12234640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image analysis of olfactory responses in the procerebrum of the terrestrial slug Limax marginatus.
    Toda S; Kawahara S; Kirino Y
    J Exp Biol; 2000 Oct; 203(Pt 19):2895-905. PubMed ID: 10976027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of an output neuron from the oscillatory molluscan olfactory network.
    Shimozono S; Watanabe S; Inoue T; Kirino Y
    Brain Res; 2001 Dec; 921(1-2):98-105. PubMed ID: 11720715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative relationship between odor-induced spike activity and spontaneous oscillations in the primary olfactory system of the terrestrial slug Limax marginatus.
    Ito I; Watanabe S; Kimura T; Kirino Y; Ito E
    Zoolog Sci; 2003 Nov; 20(11):1327-35. PubMed ID: 14624030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo recordings of spontaneous and odor-modulated dynamics in the Limax olfactory lobe.
    Cooke IR; Gelperin A
    J Neurobiol; 2001 Feb; 46(2):126-41. PubMed ID: 11153014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Odor responses and spontaneous oscillatory activity in tentacular nerves of the terrestrial slug, Limax marginatus.
    Ito I; Kimura T; Ito E
    Neurosci Lett; 2001 May; 304(3):145-8. PubMed ID: 11343823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelet entropy: a new tool for analysis of short duration brain electrical signals.
    Rosso OA; Blanco S; Yordanova J; Kolev V; Figliola A; Schürmann M; Başar E
    J Neurosci Methods; 2001 Jan; 105(1):65-75. PubMed ID: 11166367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method for quantifying similarities between oscillatory neural responses in wavelet time-frequency power profiles.
    Sato T; Kajiwara R; Takashima I; Iijima T
    Brain Res; 2016 Apr; 1636():107-117. PubMed ID: 26855257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavelet entropy analysis of event-related potentials indicates modality-independent theta dominance.
    Yordanova J; Kolev V; Rosso OA; Schürmann M; Sakowitz OW; Ozgören M; Basar E
    J Neurosci Methods; 2002 May; 117(1):99-109. PubMed ID: 12084569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent network oscillations by olfactory interneurons: modulation by endogenous amines.
    Gelperin A; Rhines LD; Flores J; Tank DW
    J Neurophysiol; 1993 Jun; 69(6):1930-9. PubMed ID: 8102394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillations and gaseous oxides in invertebrate olfaction.
    Gelperin A; Kleinfeld D; Denk W; Cooke IR
    J Neurobiol; 1996 May; 30(1):110-22. PubMed ID: 8727987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Optical recording of the odor-evoked responses in olfactory structures of the brain of the terrestrial mollusk Helix].
    Nikitin ES; Balaban PM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1999; 49(5):817-29. PubMed ID: 10570537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FMRFamide regulates oscillatory activity of the olfactory center in the slug.
    Kobayashi S; Hattori M; Elekes K; Ito E; Matsuo R
    Eur J Neurosci; 2010 Oct; 32(7):1180-92. PubMed ID: 20796020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of odor-induced oscillations in the bumblebee antennal lobe.
    Okada K; Kanzaki R
    Neurosci Lett; 2001 Dec; 316(3):133-6. PubMed ID: 11744220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air movement evokes electro-olfactogram oscillations in the olfactory epithelium and modulates olfactory processing in a slug.
    Ito I; Watanabe S; Kirino Y
    J Neurophysiol; 2006 Oct; 96(4):1939-48. PubMed ID: 16837664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two types of network oscillations and their odor responses in the primary olfactory center of a terrestrial mollusk.
    Inokuma Y; Inoue T; Watanabe S; Kirino Y
    J Neurophysiol; 2002 Jun; 87(6):3160-4. PubMed ID: 12037217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-dependent filtering of sensory information in the oscillatory olfactory center of a terrestrial mollusk.
    Inoue T; Watanabe S; Kawahara S; Kirino Y
    J Neurophysiol; 2000 Aug; 84(2):1112-5. PubMed ID: 10938335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep spindles and spike-wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis.
    Sitnikova E; Hramov AE; Koronovsky AA; van Luijtelaar G
    J Neurosci Methods; 2009 Jun; 180(2):304-16. PubMed ID: 19383511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the effects of the electrode-brain interface on the crossing electric currents in deep brain recording and stimulation.
    Yousif N; Bayford R; Wang S; Liu X
    Neuroscience; 2008 Mar; 152(3):683-91. PubMed ID: 18304747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.