These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 14512198)

  • 1. Kinetic identification of a mitochondrial zinc uptake transport process in prostate cells.
    Guan Z; Kukoyi B; Feng P; Kennedy MC; Franklin RB; Costello LC
    J Inorg Biochem; 2003 Oct; 97(2):199-206. PubMed ID: 14512198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallothionein can function as a chaperone for zinc uptake transport into prostate and liver mitochondria.
    Costello LC; Guan Z; Franklin RB; Feng P
    J Inorg Biochem; 2004 Apr; 98(4):664-6. PubMed ID: 15041247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells.
    Franklin RB; Ma J; Zou J; Guan Z; Kukoyi BI; Feng P; Costello LC
    J Inorg Biochem; 2003 Aug; 96(2-3):435-42. PubMed ID: 12888280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Availability of zinc and the ligands citrate and histidine to wheat: does uptake of entire complexes play a role?
    Gramlich A; Tandy S; Frossard E; Eikenberg J; Schulin R
    J Agric Food Chem; 2013 Nov; 61(44):10409-17. PubMed ID: 24147770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of purified zinc transporter from renal brush border membrane of rat.
    Kumar R; Prasad R
    Biochim Biophys Acta; 2000 Dec; 1509(1-2):429-39. PubMed ID: 11118552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divalent cation chelators citrate and EDTA unmask an intrinsic uncoupling pathway in isolated mitochondria.
    Starkov AA; Chinopoulos C; Starkova NN; Konrad C; Kiss G; Stepanova A; Popov VN
    J Bioenerg Biomembr; 2017 Feb; 49(1):3-11. PubMed ID: 26971498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terminal oxidation and the effects of zinc in prostate versus liver mitochondria.
    Costello LC; Guan Z; Kukoyi B; Feng P; Franklin RB
    Mitochondrion; 2004 Aug; 4(4):331-8. PubMed ID: 16120396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EAAC1 is expressed in rat and human prostate epithelial cells; functions as a high-affinity L-aspartate transporter; and is regulated by prolactin and testosterone.
    Franklin RB; Zou J; Yu Z; Costello LC
    BMC Biochem; 2006 Mar; 7():10. PubMed ID: 16566829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc causes a shift toward citrate at equilibrium of the m-aconitase reaction of prostate mitochondria.
    Costello LC; Franklin RB; Liu Y; Kennedy MC
    J Inorg Biochem; 2000 Jan; 78(2):161-5. PubMed ID: 10766339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prolactin and testosterone regulation of mitochondrial zinc in prostate epithelial cells.
    Liu Y; Franklin RB; Costello LC
    Prostate; 1997 Jan; 30(1):26-32. PubMed ID: 9018332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic use of siderophores and weak organic ligands during zinc transport in the rhizosphere controlled by pH and ion strength gradients.
    Northover GHR; Mao Y; Blasco S; Vilar R; Garcia-EspaƱa E; Rocco C; Hanif M; Weiss DJ
    Sci Rep; 2022 Apr; 12(1):6774. PubMed ID: 35474082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct visualization of mitochondrial zinc accumulation reveals uniporter-dependent and -independent transport mechanisms.
    Malaiyandi LM; Vergun O; Dineley KE; Reynolds IJ
    J Neurochem; 2005 Jun; 93(5):1242-50. PubMed ID: 15934944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells.
    Costello LC; Liu Y; Franklin RB; Kennedy MC
    J Biol Chem; 1997 Nov; 272(46):28875-81. PubMed ID: 9360955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for operation of the direct zinc ligand exchange mechanism for trafficking, transport, and reactivity of zinc in mammalian cells.
    Costello LC; Fenselau CC; Franklin RB
    J Inorg Biochem; 2011 May; 105(5):589-99. PubMed ID: 21440525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton-dependent zinc release from intracellular ligands.
    Kiedrowski L
    J Neurochem; 2014 Jul; 130(1):87-96. PubMed ID: 24606401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-transport of metal complexes by the green mussel Perna viridis.
    Chuang CY; Wang WX
    Environ Sci Technol; 2006 Jul; 40(14):4523-7. PubMed ID: 16903295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cadmium, copper and metallothionein synthesis inhibiting and stimulating compounds on zinc uptake and accumulation in rat hepatoma HTC cells.
    Steinebach OM; Wolterbeek HT
    Chem Biol Interact; 1992 Nov; 84(3):199-220. PubMed ID: 1330337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zn
    Ji SG; Weiss JH
    Exp Neurol; 2018 Apr; 302():181-195. PubMed ID: 29355498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of extracellular zinc-binding ligands in the uptake of zinc by human fibroblasts.
    Ackland ML; McArdle HJ
    J Cell Physiol; 1990 Dec; 145(3):409-13. PubMed ID: 1703164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic characterization of Zinc transport process and its inhibition by Cadmium in isolated rat renal basolateral membrane vesicles: in vitro and in vivo studies.
    Kaur J; Sharma N; Attri S; Gogia L; Prasad R
    Mol Cell Biochem; 2006 Feb; 283(1-2):169-79. PubMed ID: 16444600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.