These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 14512347)
1. Examining the independent binding assumption for binding of peptide epitopes to MHC-I molecules. Peters B; Tong W; Sidney J; Sette A; Weng Z Bioinformatics; 2003 Sep; 19(14):1765-72. PubMed ID: 14512347 [TBL] [Abstract][Full Text] [Related]
2. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Nielsen M; Lundegaard C; Worning P; Hvid CS; Lamberth K; Buus S; Brunak S; Lund O Bioinformatics; 2004 Jun; 20(9):1388-97. PubMed ID: 14962912 [TBL] [Abstract][Full Text] [Related]
3. Structure-based prediction of MHC-peptide association: algorithm comparison and application to cancer vaccine design. Schiewe AJ; Haworth IS J Mol Graph Model; 2007 Oct; 26(3):667-75. PubMed ID: 17493854 [TBL] [Abstract][Full Text] [Related]
4. DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations. Antes I; Siu SW; Lengauer T Bioinformatics; 2006 Jul; 22(14):e16-24. PubMed ID: 16873467 [TBL] [Abstract][Full Text] [Related]
6. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. Nielsen M; Lundegaard C; Lund O BMC Bioinformatics; 2007 Jul; 8():238. PubMed ID: 17608956 [TBL] [Abstract][Full Text] [Related]
7. Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models. Liu W; Meng X; Xu Q; Flower DR; Li T BMC Bioinformatics; 2006 Mar; 7():182. PubMed ID: 16579851 [TBL] [Abstract][Full Text] [Related]
8. MHC-BPS: MHC-binder prediction server for identifying peptides of flexible lengths from sequence-derived physicochemical properties. Cui J; Han LY; Lin HH; Tang ZQ; Jiang L; Cao ZW; Chen YZ Immunogenetics; 2006 Aug; 58(8):607-13. PubMed ID: 16832638 [TBL] [Abstract][Full Text] [Related]
9. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Andreatta M; Nielsen M Bioinformatics; 2016 Feb; 32(4):511-7. PubMed ID: 26515819 [TBL] [Abstract][Full Text] [Related]
10. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Lundegaard C; Lund O; Nielsen M Bioinformatics; 2008 Jun; 24(11):1397-8. PubMed ID: 18413329 [TBL] [Abstract][Full Text] [Related]
13. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties. Tung CW; Ho SY Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427 [TBL] [Abstract][Full Text] [Related]
14. Structural prediction of peptides binding to MHC class I molecules. Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245 [TBL] [Abstract][Full Text] [Related]
15. SVRMHC prediction server for MHC-binding peptides. Wan J; Liu W; Xu Q; Ren Y; Flower DR; Li T BMC Bioinformatics; 2006 Oct; 7():463. PubMed ID: 17059589 [TBL] [Abstract][Full Text] [Related]
16. Application of support vector machines for T-cell epitopes prediction. Zhao Y; Pinilla C; Valmori D; Martin R; Simon R Bioinformatics; 2003 Oct; 19(15):1978-84. PubMed ID: 14555632 [TBL] [Abstract][Full Text] [Related]
17. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships. Hattotuwagama CK; Doytchinova IA; Flower DR Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004 [TBL] [Abstract][Full Text] [Related]
18. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes. Zhao W; Sher X PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041 [TBL] [Abstract][Full Text] [Related]
19. Improved pan-specific prediction of MHC class I peptide binding using a novel receptor clustering data partitioning strategy. Mattsson AH; Kringelum JV; Garde C; Nielsen M HLA; 2016 Dec; 88(6):287-292. PubMed ID: 27762504 [TBL] [Abstract][Full Text] [Related]