These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 14512634)
21. The sorption of lead, cadmium, copper and zinc ions from aqueous solutions on a raw diatomite from Algeria. Safa M; Larouci M; Meddah B; Valemens P Water Sci Technol; 2012; 65(10):1729-37. PubMed ID: 22546785 [TBL] [Abstract][Full Text] [Related]
22. Pb(II), Cu(II) and Cd(II) removal through untreated rice husk; thermodynamics and kinetics. Guiso MG; Alberti G; Emma G; Pesavento M; Biesuz R Anal Sci; 2012; 28(10):993-9. PubMed ID: 23059996 [TBL] [Abstract][Full Text] [Related]
23. Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents. Rocha CG; Zaia DA; Alfaya RV; Alfaya AA J Hazard Mater; 2009 Jul; 166(1):383-8. PubMed ID: 19131165 [TBL] [Abstract][Full Text] [Related]
24. Adsorption studies on rice husk: removal and recovery of Cd(II) from wastewater. Ajmal M; Rao RA; Anwar S; Ahmad J; Ahmad R Bioresour Technol; 2003 Jan; 86(2):147-9. PubMed ID: 12653279 [TBL] [Abstract][Full Text] [Related]
25. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Peng SH; Wang R; Yang LZ; He L; He X; Liu X Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165 [TBL] [Abstract][Full Text] [Related]
26. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80. Pehlivan E; Altun T J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738 [TBL] [Abstract][Full Text] [Related]
27. [Biosorption of Cd(II), Cu(II), Pb(II) and Zn(II) in aqueous solutions by fruiting bodies of macrofungi (Auricularia polytricha and Tremella fuciformis)]. Mo Y; Pan R; Huang HW; Cao LX; Zhang RD Huan Jing Ke Xue; 2010 Jul; 31(7):1566-74. PubMed ID: 20825027 [TBL] [Abstract][Full Text] [Related]
28. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Ijagbemi CO; Baek MH; Kim DS J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158 [TBL] [Abstract][Full Text] [Related]
29. Phragmites australis: a novel biosorbent for the removal of heavy metals from aqueous solution. Southichak B; Nakano K; Nomura M; Chiba N; Nishimura O Water Res; 2006 Jul; 40(12):2295-302. PubMed ID: 16766011 [TBL] [Abstract][Full Text] [Related]
30. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Krishnani KK; Meng X; Christodoulatos C; Boddu VM J Hazard Mater; 2008 May; 153(3):1222-34. PubMed ID: 18006228 [TBL] [Abstract][Full Text] [Related]
31. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19. Pan R; Cao L; Zhang R J Hazard Mater; 2009 Nov; 171(1-3):761-6. PubMed ID: 19592158 [TBL] [Abstract][Full Text] [Related]
32. Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent. Suzuki Y; Kametani T; Maruyama T Water Res; 2005 May; 39(9):1803-8. PubMed ID: 15899278 [TBL] [Abstract][Full Text] [Related]
33. An experimental and quantum chemical study of removal of utmostly quantified heavy metals in wastewater using coconut husk: A novel approach to mechanism. Malik R; Dahiya S; Lata S Int J Biol Macromol; 2017 May; 98():139-149. PubMed ID: 28130136 [TBL] [Abstract][Full Text] [Related]
34. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Sheng PX; Ting YP; Chen JP; Hong L J Colloid Interface Sci; 2004 Jul; 275(1):131-41. PubMed ID: 15158390 [TBL] [Abstract][Full Text] [Related]
35. Heavy metal adsorption by a formulated zeolite-Portland cement mixture. Ok YS; Yang JE; Zhang YS; Kim SJ; Chung DY J Hazard Mater; 2007 Aug; 147(1-2):91-6. PubMed ID: 17239531 [TBL] [Abstract][Full Text] [Related]
36. Adsorption of Cd, Cu, Ni, Pb and Zn on Sphagnum peat from solutions with low metal concentrations. Kalmykova Y; Strömvall AM; Steenari BM J Hazard Mater; 2008 Apr; 152(2):885-91. PubMed ID: 17765394 [TBL] [Abstract][Full Text] [Related]
37. Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite. Purna Chandra Rao G; Satyaveni S; Ramesh A; Seshaiah K; Murthy KS; Choudary NV J Environ Manage; 2006 Nov; 81(3):265-72. PubMed ID: 16580120 [TBL] [Abstract][Full Text] [Related]
38. Mercerized mesoporous date pit activated carbon-A novel adsorbent to sequester potentially toxic divalent heavy metals from water. Aldawsari A; Khan MA; Hameed BH; Alqadami AA; Siddiqui MR; Alothman ZA; Ahmed AYBH PLoS One; 2017; 12(9):e0184493. PubMed ID: 28910368 [TBL] [Abstract][Full Text] [Related]
39. Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk. El-Shafey EI J Hazard Mater; 2010 Mar; 175(1-3):319-27. PubMed ID: 19883976 [TBL] [Abstract][Full Text] [Related]
40. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution. Lee SY; Choi HJ J Environ Manage; 2018 Mar; 209():382-392. PubMed ID: 29309963 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]