These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 14512747)

  • 1. Task relevance enhances early transient and late slow-wave activity of distributed cortical sources.
    Aine CJ; Stephen JM; Christner R; Hudson D; Best E
    J Comput Neurosci; 2003; 15(2):203-21. PubMed ID: 14512747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed striate cortical activation during spatial attention.
    Noesselt T; Hillyard SA; Woldorff MG; Schoenfeld A; Hagner T; Jäncke L; Tempelmann C; Hinrichs H; Heinze HJ
    Neuron; 2002 Aug; 35(3):575-87. PubMed ID: 12165478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow cortical potentials during retention of object, spatial, and verbal information.
    Bosch V; Mecklinger A; Friederici AD
    Brain Res Cogn Brain Res; 2001 Jan; 10(3):219-37. PubMed ID: 11167047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical generators of slow evoked responses elicited by spatial and nonspatial auditory working memory tasks.
    Anurova I; Artchakov D; Korvenoja A; Ilmoniemi RJ; Aronen HJ; Carlson S
    Clin Neurophysiol; 2005 Jul; 116(7):1644-54. PubMed ID: 15897006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrophysiological investigation of preparatory attentional control in a spatial Stroop task.
    Stern ER; Mangels JA
    J Cogn Neurosci; 2006 Jun; 18(6):1004-17. PubMed ID: 16839306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC; Sadato N
    Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of prefrontal cortex for selective attention in a visual working memory task.
    Schreppel TJ; Pauli P; Ellgring H; Fallgatter AJ; Herrmann MJ
    Int J Neurosci; 2008 Dec; 118(12):1673-88. PubMed ID: 18937114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential neural processes of tactile-visual crossmodal working memory.
    Ohara S; Lenz F; Zhou YD
    Neuroscience; 2006 Apr; 139(1):299-309. PubMed ID: 16324794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attentional shifts towards an expected visual target alter the level of alpha-band oscillatory activity in the human calcarine cortex.
    Yamagishi N; Goda N; Callan DE; Anderson SJ; Kawato M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):799-809. PubMed ID: 16246532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical oscillatory power changes during auditory oddball task revealed by spatially filtered magnetoencephalography.
    Ishii R; Canuet L; Herdman A; Gunji A; Iwase M; Takahashi H; Nakahachi T; Hirata M; Robinson SE; Pantev C; Takeda M
    Clin Neurophysiol; 2009 Mar; 120(3):497-504. PubMed ID: 19138878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of mnemonic load on cortical activity during visual working memory: linking ongoing brain activity with evoked responses.
    Boonstra TW; Powell TY; Mehrkanoon S; Breakspear M
    Int J Psychophysiol; 2013 Sep; 89(3):409-18. PubMed ID: 23583626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronometry of parietal and prefrontal activations in verbal working memory revealed by transcranial magnetic stimulation.
    Mottaghy FM; Gangitano M; Krause BJ; Pascual-Leone A
    Neuroimage; 2003 Mar; 18(3):565-75. PubMed ID: 12667834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network.
    Linden DE; Bittner RA; Muckli L; Waltz JA; Kriegeskorte N; Goebel R; Singer W; Munk MH
    Neuroimage; 2003 Nov; 20(3):1518-30. PubMed ID: 14642464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attention shift in human verbal working memory: priming contribution and dynamic brain activation.
    Li Z; Bao M; Chen X; Zhang D; Han S; He S; Hu X
    Brain Res; 2006 Mar; 1078(1):131-42. PubMed ID: 16527259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient and sustained brain activity during anticipatory visuospatial attention.
    Luks TL; Sun FT; Dale CL; Miller WL; Simpson GV
    Neuroreport; 2008 Jan; 19(2):155-9. PubMed ID: 18185100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cocaine dependence and attention switching within and between verbal and visuospatial working memory.
    Kübler A; Murphy K; Garavan H
    Eur J Neurosci; 2005 Apr; 21(7):1984-92. PubMed ID: 15869491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociation of the N2pc and sustained posterior contralateral negativity in a choice response task.
    Jolicoeur P; Brisson B; Robitaille N
    Brain Res; 2008 Jun; 1215():160-72. PubMed ID: 18482718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential roles for frontal eye fields (FEFs) and intraparietal sulcus (IPS) in visual working memory and visual attention.
    Offen S; Gardner JL; Schluppeck D; Heeger DJ
    J Vis; 2010 Sep; 10(11):28. PubMed ID: 20884523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of light wavelength on MEG ERD/ERS during a working memory task.
    Okamoto Y; Nakagawa S
    Int J Psychophysiol; 2016 Jun; 104():10-6. PubMed ID: 27040560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.