These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 14513365)
1. An improved protocol for Agrobacterium-mediated transformation of Antirrhinum majus L. Cui ML; Handa T; Ezura H Mol Genet Genomics; 2003 Dec; 270(4):296-302. PubMed ID: 14513365 [TBL] [Abstract][Full Text] [Related]
2. A rapid and stable Agrobacterium-mediated transformation method of a medicinal plant Chelone glabra L. Gao Z; Li Y; Chen J; Chen Z; Cui ML Appl Biochem Biotechnol; 2015 Mar; 175(5):2390-8. PubMed ID: 25492686 [TBL] [Abstract][Full Text] [Related]
3. Agrobacterium tumefaciens-mediated genetic transformation of Salix matsudana Koidz. using mature seeds. Yang J; Yi J; Yang C; Li C Tree Physiol; 2013 Jun; 33(6):628-39. PubMed ID: 23771952 [TBL] [Abstract][Full Text] [Related]
4. An efficient plant regeneration and Agrobacterium-mediated genetic transformation of Tagetes erecta. Gupta V; Ur Rahman L Protoplasma; 2015 Jul; 252(4):1061-70. PubMed ID: 25504508 [TBL] [Abstract][Full Text] [Related]
5. Agrobacterium-mediated transformation of the dwarf pomegranate (Punica granatum L. var. nana). Terakami S; Matsuta N; Yamamoto T; Sugaya S; Gemma H; Soejima J Plant Cell Rep; 2007 Aug; 26(8):1243-51. PubMed ID: 17453216 [TBL] [Abstract][Full Text] [Related]
6. Agrobacterium-mediated genetic transformation of Perilla frutescens. Kim KH; Lee YH; Kim D; Park YH; Lee JY; Hwang YS; Kim YH Plant Cell Rep; 2004 Nov; 23(6):386-90. PubMed ID: 15368075 [TBL] [Abstract][Full Text] [Related]
7. A stable and efficient Agrobacterium tumefaciens-mediated genetic transformation of the medicinal plant Digitalis purpurea L. Li Y; Gao Z; Piao C; Lu K; Wang Z; Cui ML Appl Biochem Biotechnol; 2014 Feb; 172(4):1807-17. PubMed ID: 24272685 [TBL] [Abstract][Full Text] [Related]
8. Production of selectable marker-free transgenic tobacco plants using a non-selection approach: chimerism or escape, transgene inheritance, and efficiency. Li B; Xie C; Qiu H Plant Cell Rep; 2009 Mar; 28(3):373-86. PubMed ID: 19018535 [TBL] [Abstract][Full Text] [Related]
9. Stable Agrobacterium-mediated transformation of maritime pine based on kanamycin selection. Alvarez JM; Ordás RJ ScientificWorldJournal; 2013; 2013():681792. PubMed ID: 24376383 [TBL] [Abstract][Full Text] [Related]
10. Use of the GFP reporter as a vital marker for Agrobacterium-mediated transformation of sugar beet (Beta vulgaris L.). Zhang CL; Chen DF; McCormac AC; Scott NW; Elliott MC; Slater A Mol Biotechnol; 2001 Feb; 17(2):109-17. PubMed ID: 11395859 [TBL] [Abstract][Full Text] [Related]
11. Agrobacterium mediated transformation of Vigna sesquipedalis Koern (asparagus bean). Ignacimuthu S Indian J Exp Biol; 2000 May; 38(5):493-8. PubMed ID: 11272416 [TBL] [Abstract][Full Text] [Related]
12. Stable transformation and direct regeneration in Coffea canephora P ex. Fr. by Agrobacterium rhizogenes mediated transformation without hairy-root phenotype. Kumar V; Satyanarayana KV; Sarala Itty S; Indu EP; Giridhar P; Chandrashekar A; Ravishankar GA Plant Cell Rep; 2006 Mar; 25(3):214-22. PubMed ID: 16331458 [TBL] [Abstract][Full Text] [Related]
13. The use of the phosphomannose isomerase gene as alternative selectable marker for Agrobacterium-mediated transformation of flax (Linum usitatissimum). Lamblin F; Aimé A; Hano C; Roussy I; Domon JM; Van Droogenbroeck B; Lainé E Plant Cell Rep; 2007 Jun; 26(6):765-72. PubMed ID: 17205337 [TBL] [Abstract][Full Text] [Related]
14. The usefulness of the gfp reporter gene for monitoring Agrobacterium-mediated transformation of potato dihaploid and tetraploid genotypes. Rakosy-Tican E; Aurori CM; Dijkstra C; Thieme R; Aurori A; Davey MR Plant Cell Rep; 2007 May; 26(5):661-71. PubMed ID: 17165042 [TBL] [Abstract][Full Text] [Related]
15. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel. Ravanfar SA; Aziz MA; Saud HM; Abdullah JO Curr Genet; 2015 Nov; 61(4):653-63. PubMed ID: 25986972 [TBL] [Abstract][Full Text] [Related]
16. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Breitler JC; Meynard D; Van Boxtel J; Royer M; Bonnot F; Cambillau L; Guiderdoni E Transgenic Res; 2004 Jun; 13(3):271-87. PubMed ID: 15359604 [TBL] [Abstract][Full Text] [Related]
17. Transformation of Antirrhinum majus L. by a rol-type multi-auto-transformation (MAT) vector system. Minlong C; Takayanagi K; Kamada H; Nishimura S; Handa T Plant Sci; 2000 Nov; 159(2):273-280. PubMed ID: 11074280 [TBL] [Abstract][Full Text] [Related]
18. Genetic Transformation of Wheat Mediated by Agrobacterium tumefaciens. Cheng M; Fry JE; Pang S; Zhou H; Hironaka CM; Duncan DR; Conner TW; Wan Y Plant Physiol; 1997 Nov; 115(3):971-980. PubMed ID: 12223854 [TBL] [Abstract][Full Text] [Related]
19. Agrobacterium-mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower. Chakrabarty R; Viswakarma N; Bhat SR; Kirti PB; Singh BD; Chopra VL J Biosci; 2002 Sep; 27(5):495-502. PubMed ID: 12381873 [TBL] [Abstract][Full Text] [Related]
20. Agrobacterium tumefaciens-mediated transgenic plant production via direct shoot bud organogenesis from pre-plasmolyzed leaf explants of Catharanthus roseus. Verma P; Mathur AK Biotechnol Lett; 2011 May; 33(5):1053-60. PubMed ID: 21207108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]