These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements. Giusti F; Popot JL; Tribet C Langmuir; 2012 Jul; 28(28):10372-80. PubMed ID: 22712750 [TBL] [Abstract][Full Text] [Related]
8. Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Popot JL Annu Rev Biochem; 2010; 79():737-75. PubMed ID: 20307193 [TBL] [Abstract][Full Text] [Related]
10. Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers (amphipols). Diab C; Winnik FM; Tribet C Langmuir; 2007 Mar; 23(6):3025-35. PubMed ID: 17284056 [TBL] [Abstract][Full Text] [Related]
11. Functionalized amphipols: a versatile toolbox suitable for applications of membrane proteins in synthetic biology. Della Pia EA; Hansen RW; Zoonens M; Martinez KL J Membr Biol; 2014 Oct; 247(9-10):815-26. PubMed ID: 24728227 [TBL] [Abstract][Full Text] [Related]
12. NMR study of a membrane protein in detergent-free aqueous solution. Zoonens M; Catoire LJ; Giusti F; Popot JL Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8893-8. PubMed ID: 15956183 [TBL] [Abstract][Full Text] [Related]
13. Labeling and functionalizing amphipols for biological applications. Le Bon C; Popot JL; Giusti F J Membr Biol; 2014 Oct; 247(9-10):797-814. PubMed ID: 24696186 [TBL] [Abstract][Full Text] [Related]
14. Folding of diphtheria toxin T-domain in the presence of amphipols and fluorinated surfactants: Toward thermodynamic measurements of membrane protein folding. Kyrychenko A; Rodnin MV; Vargas-Uribe M; Sharma SK; Durand G; Pucci B; Popot JL; Ladokhin AS Biochim Biophys Acta; 2012 Apr; 1818(4):1006-12. PubMed ID: 21945883 [TBL] [Abstract][Full Text] [Related]
15. How amphipols embed membrane proteins: global solvent accessibility and interaction with a flexible protein terminus. Etzkorn M; Zoonens M; Catoire LJ; Popot JL; Hiller S J Membr Biol; 2014 Oct; 247(9-10):965-70. PubMed ID: 24668145 [TBL] [Abstract][Full Text] [Related]
16. The use of amphipols for solution NMR studies of membrane proteins: advantages and constraints as compared to other solubilizing media. Planchard N; Point É; Dahmane T; Giusti F; Renault M; Le Bon C; Durand G; Milon A; Guittet É; Zoonens M; Popot JL; Catoire LJ J Membr Biol; 2014 Oct; 247(9-10):827-42. PubMed ID: 24676477 [TBL] [Abstract][Full Text] [Related]
17. Folding and stability of integral membrane proteins in amphipols. Kleinschmidt JH; Popot JL Arch Biochem Biophys; 2014 Dec; 564():327-43. PubMed ID: 25449655 [TBL] [Abstract][Full Text] [Related]
18. Design of PG-Surfactants Bearing Polyacrylamide Polymer Chain to Solubilize Membrane Proteins in a Surfactant-Free Buffer. Shimamoto T; Nakakubo T; Noji T; Koeda S; Kawakami K; Kamiya N; Mizuno T Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33546366 [TBL] [Abstract][Full Text] [Related]
19. Complexation of integral membrane proteins by phosphorylcholine-based amphipols. Diab C; Tribet C; Gohon Y; Popot JL; Winnik FM Biochim Biophys Acta; 2007 Nov; 1768(11):2737-47. PubMed ID: 17825785 [TBL] [Abstract][Full Text] [Related]
20. Interactions of surfactants with lipid membranes. Heerklotz H Q Rev Biophys; 2008; 41(3-4):205-64. PubMed ID: 19079805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]