These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 14514098)

  • 1. Measurement of birefringence in thin-film waveguides by Rayleigh scattering.
    Janz S; Cheben P; Dayan H; Deakos R
    Opt Lett; 2003 Oct; 28(19):1778-80. PubMed ID: 14514098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Birefringence and optical power confinement in horizontal multi-slot waveguides made of Si and SiO2.
    Yoo HG; Fu Y; Riley D; Shin JH; Fauchet PM
    Opt Express; 2008 Jun; 16(12):8623-8. PubMed ID: 18545575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion-exchanged glass waveguides with low birefringence for a broad range of waveguide widths.
    Yliniemi S; West BR; Honkanen S
    Appl Opt; 2005 Jun; 44(16):3358-63. PubMed ID: 15943272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the modal birefringence of single-mode K(+) ion-exchanged planar waveguides with polarimetric interferometry.
    Qi ZM; Itoh K; Murabayashi M
    Appl Opt; 2000 Nov; 39(31):5750-4. PubMed ID: 18354573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally induced birefringence and stress in poly(methyl methacrylate) waveguides on oxidized silicon substrates.
    Pincenti JC; Goel S; Naylor DL
    Appl Opt; 1993 Jan; 32(3):322-6. PubMed ID: 20802693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition of Faraday rotation and birefringence in femtosecond laser direct written waveguides in magneto-optical glass.
    Liu Q; Gross S; Dekker P; Withford MJ; Steel MJ
    Opt Express; 2014 Nov; 22(23):28037-51. PubMed ID: 25402044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of phase matching for mid-infrared coherent anti-Stokes Raman wavelength conversion with orthogonally polarized pump and Stokes waves in silicon-on-sapphire waveguides.
    Wang Z; Liu H; Huang N; Sun Q; Li X
    Appl Opt; 2013 Nov; 52(33):8095-101. PubMed ID: 24513763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability.
    Zhu S; Lo GQ; Kwong DL
    Opt Express; 2010 Nov; 18(24):25283-91. PubMed ID: 21164876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tin-diffused glass slab waveguides locally covered with tapered thin TiO2 films for application as a polarimetric interference sensor with an improved performance.
    Qi ZM; Honma I; Zhou H
    Anal Chem; 2005 Feb; 77(4):1163-6. PubMed ID: 15859000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant birefringence in multi-slotted silicon nanophotonic waveguides.
    Yang SH; Cooper ML; Bandaru PR; Mookherjea S
    Opt Express; 2008 May; 16(11):8306-16. PubMed ID: 18545544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eliminating the birefringence in silicon-on-insulator ridge waveguides by use of cladding stress.
    Xu DX; Cheben P; Dalacu D; Delâge A; Janz S; Lamontagne B; Picard MJ; Ye WN
    Opt Lett; 2004 Oct; 29(20):2384-6. PubMed ID: 15532275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of birefringence in integrated optical waveguides by use of a microwave-modulated optical wave.
    Hu WW; Inagaki K; Mizuguchi Y
    Opt Lett; 2001 Feb; 26(4):193-5. PubMed ID: 18033544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of modal birefringence in optical waveguides based on the Mach-Zehnder interferometer.
    Zhong ZB; Fu ZC; Shi JD; Tan QL; Huang WB; Huang XG
    Rev Sci Instrum; 2014 May; 85(5):053104. PubMed ID: 24880350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat-resistant flexible-film optical waveguides from fluorinated polyimides.
    Matsuura T; Kobayashi J; Ando S; Maruno T; Sasaki S; Yamamoto F
    Appl Opt; 1999 Feb; 38(6):966-71. PubMed ID: 18305699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large tuning of birefringence in two strip silicon waveguides via optomechanical motion.
    Ma J; Povinelli ML
    Opt Express; 2009 Sep; 17(20):17818-28. PubMed ID: 19907569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the birefringence of a silicon-on-insulator rib waveguide.
    Dai D; He S
    Appl Opt; 2004 Feb; 43(5):1156-61. PubMed ID: 15008497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cladding layer and subsequent heat treatment on hydrogenated amorphous silicon waveguides.
    Zhu S; Lo GQ; Li W; Kwong DL
    Opt Express; 2012 Oct; 20(21):23676-83. PubMed ID: 23188333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable refractive index and birefringent waveguides by sputtering tantalum in O(2)-N(2) mixtures.
    Ingrey SJ; Westwood WD; Cheng YC; Wei J
    Appl Opt; 1975 Sep; 14(9):2194-8. PubMed ID: 20154983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulating light polarizations with a hyperbolic metamaterial waveguide.
    Zhu H; Yin X; Chen L; Zhu Z; Li X
    Opt Lett; 2015 Oct; 40(20):4595-8. PubMed ID: 26469572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-matched sum frequency generation in strained silicon waveguides using their second-order nonlinear optical susceptibility.
    Avrutsky I; Soref R
    Opt Express; 2011 Oct; 19(22):21707-16. PubMed ID: 22109021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.