These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 1451433)
1. Developmental changes of L-lysine-ketoglutarate reductase in rat brain and liver. Rao VV; Pan X; Chang YF Comp Biochem Physiol B; 1992 Sep; 103(1):221-4. PubMed ID: 1451433 [TBL] [Abstract][Full Text] [Related]
2. Lysine-alpha-ketoglutarate reductase and saccharopine dehydrogenase are located only in the mitochondrial matrix in rat liver. Blemings KP; Crenshaw TD; Swick RW; Benevenga NJ J Nutr; 1994 Aug; 124(8):1215-21. PubMed ID: 8064371 [TBL] [Abstract][Full Text] [Related]
3. Regulation of oxidative degradation of L-lysine in rat liver mitochondria. Scislowski PW; Foster AR; Fuller MF Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):887-91. PubMed ID: 8010974 [TBL] [Abstract][Full Text] [Related]
4. Rat hepatic lysine-2-oxoglutarate reductase activity. Induction by lysine, glucagon and cycloheximide administration. Hussein L; Müller R Nutr Metab; 1978; 22(2):127-40. PubMed ID: 619319 [TBL] [Abstract][Full Text] [Related]
5. Regulation of lysine catabolism through lysine-ketoglutarate reductase and saccharopine dehydrogenase in Arabidopsis. Tang G; Miron D; Zhu-Shimoni JX; Galili G Plant Cell; 1997 Aug; 9(8):1305-16. PubMed ID: 9286108 [TBL] [Abstract][Full Text] [Related]
6. Purification and properties of L-lysine-alpha-ketoglutarate reductase from rat liver mitochondria. Noda C; Ichihara A Biochim Biophys Acta; 1978 Aug; 525(2):307-13. PubMed ID: 687635 [TBL] [Abstract][Full Text] [Related]
7. Lysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse. Papes F; Kemper EL; Cord-Neto G; Langone F; Arruda P Biochem J; 1999 Dec; 344 Pt 2(Pt 2):555-63. PubMed ID: 10567240 [TBL] [Abstract][Full Text] [Related]
8. Induction of L-lysine-2-oxoglutarate reductase by glucagon and glucocorticoid in developing and adult rats: in vivo and in vitro studies. Shinno H; Noda C; Tanaka K; Ichihara A Biochim Biophys Acta; 1980 Dec; 633(3):310-6. PubMed ID: 7011389 [TBL] [Abstract][Full Text] [Related]
9. Lysine α-ketoglutarate reductase, but not saccharopine dehydrogenase, is subject to substrate inhibition in pig liver. Pink DB; Gatrell SK; Elango R; Turchinsky J; Kiess AS; Blemings KP; Dixon WT; Ball RO Nutr Res; 2011 Jul; 31(7):544-54. PubMed ID: 21840471 [TBL] [Abstract][Full Text] [Related]
10. Familial hyperlysinemia: enzyme studies, diagnostic methods, comments on terminology. Dancis J; Hutzler J; Cox RP Am J Hum Genet; 1979 May; 31(3):290-9. PubMed ID: 463877 [TBL] [Abstract][Full Text] [Related]
11. Enzymatic measurement of saccharopine with saccharopine dehydrogenase. Simonson MS; Eckel RE Anal Biochem; 1985 May; 147(1):230-3. PubMed ID: 3927777 [TBL] [Abstract][Full Text] [Related]
12. Adaptive response of lysine and threonine degrading enzymes in adult rats. Chu SH; Hegsted DM J Nutr; 1976 Aug; 106(8):1089-96. PubMed ID: 939989 [TBL] [Abstract][Full Text] [Related]
13. Lysine degradation through the saccharopine pathway in bacteria: LKR and SDH in bacteria and its relationship to the plant and animal enzymes. Serrano GC; Rezende e Silva Figueira T; Kiyota E; Zanata N; Arruda P FEBS Lett; 2012 Mar; 586(6):905-11. PubMed ID: 22449979 [TBL] [Abstract][Full Text] [Related]
14. Lysine biosynthesis in selected pathogenic fungi: characterization of lysine auxotrophs and the cloned LYS1 gene of Candida albicans. Garrad RC; Bhattacharjee JK J Bacteriol; 1992 Nov; 174(22):7379-84. PubMed ID: 1429460 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of bovine liver lysine-ketoglutarate reductase by urea cycle metabolites and saccharopine. Ameen M; Palmer T; Oberholzer VG Biochem Int; 1987 Apr; 14(4):589-95. PubMed ID: 3134024 [TBL] [Abstract][Full Text] [Related]
17. The lysine catabolite saccharopine impairs development by disrupting mitochondrial homeostasis. Zhou J; Wang X; Wang M; Chang Y; Zhang F; Ban Z; Tang R; Gan Q; Wu S; Guo Y; Zhang Q; Wang F; Zhao L; Jing Y; Qian W; Wang G; Guo W; Yang C J Cell Biol; 2019 Feb; 218(2):580-597. PubMed ID: 30573525 [TBL] [Abstract][Full Text] [Related]
18. The Metabolite Saccharopine Impairs Neuronal Development by Inhibiting the Neurotrophic Function of Glucose-6-Phosphate Isomerase. Guo Y; Wu J; Wang M; Wang X; Jian Y; Yang C; Guo W J Neurosci; 2022 Mar; 42(13):2631-2646. PubMed ID: 35135854 [TBL] [Abstract][Full Text] [Related]
19. Familial hyperlysinemias. Purification and characterization of the bifunctional aminoadipic semialdehyde synthase with lysine-ketoglutarate reductase and saccharopine dehydrogenase activities. Markovitz PJ; Chuang DT; Cox RP J Biol Chem; 1984 Oct; 259(19):11643-6. PubMed ID: 6434529 [TBL] [Abstract][Full Text] [Related]
20. The bifunctional aminoadipic semialdehyde synthase in lysine degradation. Separation of reductase and dehydrogenase domains by limited proteolysis and column chromatography. Markovitz PJ; Chuang DT J Biol Chem; 1987 Jul; 262(19):9353-8. PubMed ID: 3110158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]