BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 14514675)

  • 1. Electrostatic environment at the active site of prolyl oligopeptidase is highly influential during substrate binding.
    Szeltner Z; Rea D; Renner V; Juliano L; Fülop V; Polgár L
    J Biol Chem; 2003 Dec; 278(49):48786-93. PubMed ID: 14514675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of prolyl oligopeptidase substrate/inhibitor complexes. Use of inhibitor binding for titration of the catalytic histidine residue.
    Fülöp V; Szeltner Z; Renner V; Polgár L
    J Biol Chem; 2001 Jan; 276(2):1262-6. PubMed ID: 11031266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic effects and binding determinants in the catalysis of prolyl oligopeptidase. Site specific mutagenesis at the oxyanion binding site.
    Szeltner Z; Rea D; Renner V; Fulop V; Polgar L
    J Biol Chem; 2002 Nov; 277(45):42613-22. PubMed ID: 12202494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The noncatalytic beta-propeller domain of prolyl oligopeptidase enhances the catalytic capability of the peptidase domain.
    Szeltner Z; Renner V; Polgár L
    J Biol Chem; 2000 May; 275(20):15000-5. PubMed ID: 10747969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligopeptidase B: a new type of serine peptidase with a unique substrate-dependent temperature sensitivity.
    Polgár L
    Biochemistry; 1999 Nov; 38(47):15548-55. PubMed ID: 10569938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unusual secondary specificity of prolyl oligopeptidase and the different reactivities of its two forms toward charged substrates.
    Polgár L
    Biochemistry; 1992 Aug; 31(33):7729-35. PubMed ID: 1510958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The prolyl oligopeptidase family.
    Polgár L
    Cell Mol Life Sci; 2002 Feb; 59(2):349-62. PubMed ID: 11915948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-dependent competency of the catalytic triad of prolyl oligopeptidase.
    Szeltner Z; Rea D; Juhász T; Renner V; Mucsi Z; Orosz G; Fülöp V; Polgár L
    J Biol Chem; 2002 Nov; 277(47):44597-605. PubMed ID: 12228249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolyl oligopeptidase catalysis. Reactions with thiono substrates reveal substrate-induced conformational change to be the rate-limiting step.
    Polgár L; Kollt E; Hollósi M
    FEBS Lett; 1993 May; 322(3):227-30. PubMed ID: 8486154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate- and pH-dependent contribution of oxyanion binding site to the catalysis of prolyl oligopeptidase, a paradigm of the serine oligopeptidase family.
    Szeltner Z; Renner V; Polgár L
    Protein Sci; 2000 Feb; 9(2):353-60. PubMed ID: 10716187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and mechanistic studies of prolyl oligopeptidase from the hyperthermophile Pyrococcus furiosus.
    Harris MN; Madura JD; Ming LJ; Harwood VJ
    J Biol Chem; 2001 Jun; 276(22):19310-7. PubMed ID: 11278687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of charged residues in the catalytic mechanism of hepatitis C virus NS3 protease: electrostatic precollision guidance and transition-state stabilization.
    Koch U; Biasiol G; Brunetti M; Fattori D; Pallaoro M; Steinkühler C
    Biochemistry; 2001 Jan; 40(3):631-40. PubMed ID: 11170379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-dependent, non-hyperbolic kinetics of pig brain prolyl oligopeptidase and its tight binding inhibition by JTP-4819.
    Venäläinen JI; Juvonen RO; Forsberg MM; Garcia-Horsman A; Poso A; Wallen EA; Gynther J; Männistö PT
    Biochem Pharmacol; 2002 Aug; 64(3):463-71. PubMed ID: 12147298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low barrier hydrogen bond is absent in the catalytic triads in the ground state but Is present in a transition-state complex in the prolyl oligopeptidase family of serine proteases.
    Kahyaoglu A; Haghjoo K; Guo F; Jordan F; Kettner C; Felföldi F; Polgár L
    J Biol Chem; 1997 Oct; 272(41):25547-54. PubMed ID: 9325271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic effects on modification of charged groups in the active site cleft of subtilisin by protein engineering.
    Russell AJ; Thomas PG; Fersht AR
    J Mol Biol; 1987 Feb; 193(4):803-13. PubMed ID: 3302273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple method for the determination of individual rate constants for substrate hydrolysis by serine proteases.
    Ayala YM; Di Cera E
    Protein Sci; 2000 Aug; 9(8):1589-93. PubMed ID: 10975580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Truncated prolyl oligopeptidase from Pyrococcus furiosus.
    Juhász T; Szeltner Z; Polgár L
    Proteins; 2007 Nov; 69(3):633-43. PubMed ID: 17623862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A potential processing enzyme in prokaryotes: oligopeptidase B, a new type of serine peptidase.
    Polgár L
    Proteins; 1997 Jul; 28(3):375-9. PubMed ID: 9223183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalysis of serine oligopeptidases is controlled by a gating filter mechanism.
    Fülöp V; Szeltner Z; Polgár L
    EMBO Rep; 2000 Sep; 1(3):277-81. PubMed ID: 11256612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site.
    Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W
    J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.