These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 14514680)
1. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. Yamada-Inagawa T; Okuno T; Karata K; Yamanaka K; Ogura T J Biol Chem; 2003 Dec; 278(50):50182-7. PubMed ID: 14514680 [TBL] [Abstract][Full Text] [Related]
2. Characterization of mutants of the Escherichia coli AAA protease, FtsH, carrying a mutation in the central pore region. Okuno T; Yamanaka K; Ogura T J Struct Biol; 2006 Oct; 156(1):109-14. PubMed ID: 16563799 [TBL] [Abstract][Full Text] [Related]
3. Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsH. Karata K; Inagawa T; Wilkinson AJ; Tatsuta T; Ogura T J Biol Chem; 1999 Sep; 274(37):26225-32. PubMed ID: 10473576 [TBL] [Abstract][Full Text] [Related]
4. Probing the mechanism of ATP hydrolysis and substrate translocation in the AAA protease FtsH by modelling and mutagenesis. Karata K; Verma CS; Wilkinson AJ; Ogura T Mol Microbiol; 2001 Feb; 39(4):890-903. PubMed ID: 11251810 [TBL] [Abstract][Full Text] [Related]
5. Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease. Bruckner RC; Gunyuzlu PL; Stein RL Biochemistry; 2003 Sep; 42(36):10843-52. PubMed ID: 12962509 [TBL] [Abstract][Full Text] [Related]
6. FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins. Akiyama Y; Kihara A; Tokuda H; Ito K J Biol Chem; 1996 Dec; 271(49):31196-201. PubMed ID: 8940120 [TBL] [Abstract][Full Text] [Related]
7. Allelic characterization of the leaf-variegated mutation var2 identifies the conserved amino acid residues of FtsH that are important for ATP hydrolysis and proteolysis. Sakamoto W; Miura E; Kaji Y; Okuno T; Nishizono M; Ogura T Plant Mol Biol; 2004 Nov; 56(5):705-16. PubMed ID: 15803409 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli. Shotland Y; Teff D; Koby S; Kobiler O; Oppenheim AB J Mol Biol; 2000 Jun; 299(4):953-64. PubMed ID: 10843850 [TBL] [Abstract][Full Text] [Related]
9. Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Herman C; Prakash S; Lu CZ; Matouschek A; Gross CA Mol Cell; 2003 Mar; 11(3):659-69. PubMed ID: 12667449 [TBL] [Abstract][Full Text] [Related]
10. Functional role of the N-terminal region of the Lon protease from Mycobacterium smegmatis. Roudiak SG; Shrader TE Biochemistry; 1998 Aug; 37(32):11255-63. PubMed ID: 9698372 [TBL] [Abstract][Full Text] [Related]
11. Roles of homooligomerization and membrane association in ATPase and proteolytic activities of FtsH in vitro. Akiyama Y; Ito K Biochemistry; 2001 Jun; 40(25):7687-93. PubMed ID: 11412122 [TBL] [Abstract][Full Text] [Related]
12. Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease. Urech C; Koby S; Oppenheim AB; Münchbach M; Hennecke H; Narberhaus F Eur J Biochem; 2000 Aug; 267(15):4831-9. PubMed ID: 10903518 [TBL] [Abstract][Full Text] [Related]
13. An AAA protease FtsH can initiate proteolysis from internal sites of a model substrate, apo-flavodoxin. Okuno T; Yamanaka K; Ogura T Genes Cells; 2006 Mar; 11(3):261-8. PubMed ID: 16483314 [TBL] [Abstract][Full Text] [Related]
15. The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 A resolution. Krzywda S; Brzozowski AM; Verma C; Karata K; Ogura T; Wilkinson AJ Structure; 2002 Aug; 10(8):1073-83. PubMed ID: 12176385 [TBL] [Abstract][Full Text] [Related]
16. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. Tomoyasu T; Gamer J; Bukau B; Kanemori M; Mori H; Rutman AJ; Oppenheim AB; Yura T; Yamanaka K; Niki H EMBO J; 1995 Jun; 14(11):2551-60. PubMed ID: 7781608 [TBL] [Abstract][Full Text] [Related]
17. Direct evidence that a conserved arginine in RuvB AAA+ ATPase acts as an allosteric effector for the ATPase activity of the adjacent subunit in a hexamer. Hishida T; Han YW; Fujimoto S; Iwasaki H; Shinagawa H Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9573-7. PubMed ID: 15210950 [TBL] [Abstract][Full Text] [Related]
18. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32. Arsène F; Tomoyasu T; Mogk A; Schirra C; Schulze-Specking A; Bukau B J Bacteriol; 1999 Jun; 181(11):3552-61. PubMed ID: 10348869 [TBL] [Abstract][Full Text] [Related]
19. Dislocation of membrane proteins in FtsH-mediated proteolysis. Kihara A; Akiyama Y; Ito K EMBO J; 1999 Jun; 18(11):2970-81. PubMed ID: 10357810 [TBL] [Abstract][Full Text] [Related]
20. Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. Park E; Rho YM; Koh OJ; Ahn SW; Seong IS; Song JJ; Bang O; Seol JH; Wang J; Eom SH; Chung CH J Biol Chem; 2005 Jun; 280(24):22892-8. PubMed ID: 15849200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]