These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 14514682)

  • 1. The three-dimensional structure of bovine rhodopsin determined by electron cryomicroscopy.
    Krebs A; Edwards PC; Villa C; Li J; Schertler GF
    J Biol Chem; 2003 Dec; 278(50):50217-25. PubMed ID: 14514682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of rhodopsin.
    Schertler GF
    Novartis Found Symp; 1999; 224():54-66; discussion 66-9,. PubMed ID: 10614046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron crystallography reveals the structure of metarhodopsin I.
    Ruprecht JJ; Mielke T; Vogel R; Villa C; Schertler GF
    EMBO J; 2004 Sep; 23(18):3609-20. PubMed ID: 15329674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Projection structure of frog rhodopsin in two crystal forms.
    Schertler GF; Hargrave PA
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11578-82. PubMed ID: 8524807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arrangement of rhodopsin transmembrane alpha-helices.
    Unger VM; Hargrave PA; Baldwin JM; Schertler GF
    Nature; 1997 Sep; 389(6647):203-6. PubMed ID: 9296501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane.
    Davies A; Gowen BE; Krebs AM; Schertler GF; Saibil HR
    J Mol Biol; 2001 Nov; 314(3):455-63. PubMed ID: 11846559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin.
    Krebs A; Villa C; Edwards PC; Schertler GF
    J Mol Biol; 1998 Oct; 282(5):991-1003. PubMed ID: 9753549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of rhodopsin and the metarhodopsin I photointermediate.
    Schertler GF
    Curr Opin Struct Biol; 2005 Aug; 15(4):408-15. PubMed ID: 16043340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy.
    Unger VM; Schertler GF
    Biophys J; 1995 May; 68(5):1776-86. PubMed ID: 7612819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors.
    Filipek S; Teller DC; Palczewski K; Stenkamp R
    Annu Rev Biophys Biomol Struct; 2003; 32():375-97. PubMed ID: 12574068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-Ray diffraction analysis of three-dimensional crystals of bovine rhodopsin obtained from mixed micelles.
    Okada T; Le Trong I; Fox BA; Behnke CA; Stenkamp RE; Palczewski K
    J Struct Biol; 2000 May; 130(1):73-80. PubMed ID: 10806093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of rhodopsin.
    Schertler GF
    Eye (Lond); 1998; 12 ( Pt 3b)():504-10. PubMed ID: 9775210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray crystallographic analysis of 9-cis-rhodopsin, a model analogue visual pigment.
    Nakamichi H; Okada T
    Photochem Photobiol; 2007; 83(2):232-5. PubMed ID: 17576343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relevance of rhodopsin studies for GPCR activation.
    Deupi X
    Biochim Biophys Acta; 2014 May; 1837(5):674-82. PubMed ID: 24041646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Projection structure of an invertebrate rhodopsin.
    Davies A; Schertler GF; Gowen BE; Saibil HR
    J Struct Biol; 1996; 117(1):36-44. PubMed ID: 8776886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BUNDLE: a program for building the transmembrane domains of G-protein-coupled receptors.
    Filizola M; Perez JJ; Cartenì-Farina M
    J Comput Aided Mol Des; 1998 Mar; 12(2):111-8. PubMed ID: 9690171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined biophysical and biochemical information confirms arrangement of transmembrane helices visible from the three-dimensional map of frog rhodopsin.
    Herzyk P; Hubbard RE
    J Mol Biol; 1998 Aug; 281(4):741-54. PubMed ID: 9710543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First principles predictions of the structure and function of g-protein-coupled receptors: validation for bovine rhodopsin.
    Trabanino RJ; Hall SE; Vaidehi N; Floriano WB; Kam VW; Goddard WA
    Biophys J; 2004 Apr; 86(4):1904-21. PubMed ID: 15041637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of rhodopsin: a template for cone visual pigments and other G protein-coupled receptors.
    Stenkamp RE; Filipek S; Driessen CA; Teller DC; Palczewski K
    Biochim Biophys Acta; 2002 Oct; 1565(2):168-82. PubMed ID: 12409193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.