BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 14514705)

  • 1. Effects of live high, train low hypoxic exposure on lactate metabolism in trained humans.
    Clark SA; Aughey RJ; Gore CJ; Hahn AG; Townsend NE; Kinsman TA; Chow CM; McKenna MJ; Hawley JA
    J Appl Physiol (1985); 2004 Feb; 96(2):517-25. PubMed ID: 14514705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interspersed normoxia during live high, train low interventions reverses an early reduction in muscle Na+, K +ATPase activity in well-trained athletes.
    Aughey RJ; Clark SA; Gore CJ; Townsend NE; Hahn AG; Kinsman TA; Goodman C; Chow CM; Martin DT; Hawley JA; McKenna MJ
    Eur J Appl Physiol; 2006 Oct; 98(3):299-309. PubMed ID: 16932967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxic ventilatory response is correlated with increased submaximal exercise ventilation after live high, train low.
    Townsend NE; Gore CJ; Hahn AG; Aughey RJ; Clark SA; Kinsman TA; McKenna MJ; Hawley JA; Chow CM
    Eur J Appl Physiol; 2005 May; 94(1-2):207-15. PubMed ID: 15609029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Living high-training low increases hypoxic ventilatory response of well-trained endurance athletes.
    Townsend NE; Gore CJ; Hahn AG; McKenna MJ; Aughey RJ; Clark SA; Kinsman T; Hawley JA; Chow CM
    J Appl Physiol (1985); 2002 Oct; 93(4):1498-505. PubMed ID: 12235052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Live high:train low increases muscle buffer capacity and submaximal cycling efficiency.
    Gore CJ; Hahn AG; Aughey RJ; Martin DT; Ashenden MJ; Clark SA; Garnham AP; Roberts AD; Slater GJ; McKenna MJ
    Acta Physiol Scand; 2001 Nov; 173(3):275-86. PubMed ID: 11736690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nrf2 Activation Enhances Muscular MCT1 Expression and Hypoxic Exercise Capacity.
    Wang L; Zhu R; Wang J; Yu S; Wang J; Zhang Y
    Med Sci Sports Exerc; 2020 Aug; 52(8):1719-1728. PubMed ID: 32079911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct protein and mRNA kinetics of skeletal muscle proton transporters following exercise can influence interpretation of adaptations to training.
    McGinley C; Bishop DJ
    Exp Physiol; 2016 Dec; 101(12):1565-1580. PubMed ID: 27689626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of fuel metabolism by preexercise muscle glycogen content and exercise intensity.
    Arkinstall MJ; Bruce CR; Clark SA; Rickards CA; Burke LM; Hawley JA
    J Appl Physiol (1985); 2004 Dec; 97(6):2275-83. PubMed ID: 15286047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans.
    Thomas C; Perrey S; Lambert K; Hugon G; Mornet D; Mercier J
    J Appl Physiol (1985); 2005 Mar; 98(3):804-9. PubMed ID: 15531559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: influence of chronic metabolic alkalosis.
    Thomas C; Bishop D; Moore-Morris T; Mercier J
    Am J Physiol Endocrinol Metab; 2007 Oct; 293(4):E916-22. PubMed ID: 17609257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans.
    Wadley GD; Lee-Young RS; Canny BJ; Wasuntarawat C; Chen ZP; Hargreaves M; Kemp BE; McConell GK
    Am J Physiol Endocrinol Metab; 2006 Apr; 290(4):E694-702. PubMed ID: 16263768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of training intensity on muscle lactate transporters and lactate threshold of cross-country skiers.
    Evertsen F; Medbø JI; Bonen A
    Acta Physiol Scand; 2001 Oct; 173(2):195-205. PubMed ID: 11683677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of high-intensity training on muscle lactate transporters and postexercise recovery of muscle lactate and hydrogen ions in women.
    Bishop D; Edge J; Thomas C; Mercier J
    Am J Physiol Regul Integr Comp Physiol; 2008 Dec; 295(6):R1991-8. PubMed ID: 18832090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle.
    Juel C; Klarskov C; Nielsen JJ; Krustrup P; Mohr M; Bangsbo J
    Am J Physiol Endocrinol Metab; 2004 Feb; 286(2):E245-51. PubMed ID: 14559724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic intermittent hypoxia and incremental cycling exercise independently depress muscle in vitro maximal Na+-K+-ATPase activity in well-trained athletes.
    Aughey RJ; Gore CJ; Hahn AG; Garnham AP; Clark SA; Petersen AC; Roberts AD; McKenna MJ
    J Appl Physiol (1985); 2005 Jan; 98(1):186-92. PubMed ID: 15033968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does exercise-induced hypoxemia modify lactate influx into erythrocytes and hemorheological parameters in athletes?
    Connes P; Bouix D; Py G; Caillaud C; Kippelen P; Brun JF; Varray A; Prefaut C; Mercier J
    J Appl Physiol (1985); 2004 Sep; 97(3):1053-8. PubMed ID: 15121747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia stimulates lactate release and modulates monocarboxylate transporter (MCT1, MCT2, and MCT4) expression in human adipocytes.
    Pérez de Heredia F; Wood IS; Trayhurn P
    Pflugers Arch; 2010 Feb; 459(3):509-18. PubMed ID: 19876643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-intensity exercise acutely decreases the membrane content of MCT1 and MCT4 and buffer capacity in human skeletal muscle.
    Bishop D; Edge J; Thomas C; Mercier J
    J Appl Physiol (1985); 2007 Feb; 102(2):616-21. PubMed ID: 17082373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans.
    Juel C; Holten MK; Dela F
    J Physiol; 2004 Apr; 556(Pt 1):297-304. PubMed ID: 14724187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between skeletal muscle MCT1 and accumulated exercise during voluntary wheel running.
    Yoshida Y; Hatta H; Kato M; Enoki T; Kato H; Bonen A
    J Appl Physiol (1985); 2004 Aug; 97(2):527-34. PubMed ID: 15107415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.