These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 14514763)

  • 21. Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur.
    Perilli E; Baleani M; Ohman C; Fognani R; Baruffaldi F; Viceconti M
    J Biomech; 2008; 41(2):438-46. PubMed ID: 17949726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smooth surface micro finite element modelling of a cancellous bone analogue material.
    Leung SY; Browne M; New AM
    Proc Inst Mech Eng H; 2008 Jan; 222(1):145-9. PubMed ID: 18335725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The microstructural and biomechanical development of the condylar bone: a review.
    Willems NM; Langenbach GE; Everts V; Zentner A
    Eur J Orthod; 2014 Aug; 36(4):479-85. PubMed ID: 24375755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of bone strength by μCT and MDCT-based finite-element-models: how much spatial resolution is needed?
    Bauer JS; Sidorenko I; Mueller D; Baum T; Issever AS; Eckstein F; Rummeny EJ; Link TM; Raeth CW
    Eur J Radiol; 2014 Jan; 83(1):e36-42. PubMed ID: 24274992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Study on stress distribution of the condyle].
    Hu M; Zhou J; Hong M
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1996 Jul; 31(4):214-6. PubMed ID: 9592271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical role of peri-implant cancellous bone architecture.
    Matsunaga S; Shirakura Y; Ohashi T; Nakahara K; Tamatsu Y; Takano N; Ide Y
    Int J Prosthodont; 2010; 23(4):333-8. PubMed ID: 20617221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cancellous bone properties and matrix content of TGF-beta2 and IGF-I in human tibia: a pilot study.
    Yeni YN; Dong XN; Zhang B; Gibson GJ; Fyhrie DP
    Clin Orthop Relat Res; 2009 Dec; 467(12):3079-86. PubMed ID: 19472023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone.
    Teo JC; Si-Hoe KM; Keh JE; Teoh SH
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):235-44. PubMed ID: 16356612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical consequences of developmental changes in trabecular architecture and mineralization of the pig mandibular condyle.
    Mulder L; van Ruijven LJ; Koolstra JH; van Eijden TM
    J Biomech; 2007; 40(7):1575-82. PubMed ID: 17056047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanobiological bone reaction quantified by positron emission tomography.
    Suenaga H; Chen J; Yamaguchi K; Li W; Sasaki K; Swain M; Li Q
    J Dent Res; 2015 May; 94(5):738-44. PubMed ID: 25710952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of a finite element model of the human metacarpal.
    Barker DS; Netherway DJ; Krishnan J; Hearn TC
    Med Eng Phys; 2005 Mar; 27(2):103-13. PubMed ID: 15642506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantifying the regional variations in the mechanical properties of cancellous bone of the tibia using indentation testing and quantitative computed tomographic imaging.
    Vijayakumar V; Quenneville CE
    Proc Inst Mech Eng H; 2016 Jun; 230(6):588-93. PubMed ID: 27068841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The stock alloplastic temporomandibular joint implant can influence the behavior of the opposite native joint: A numerical study.
    Ramos AM; Mesnard M
    J Craniomaxillofac Surg; 2015 Oct; 43(8):1384-91. PubMed ID: 26231883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of the closing and opening muscle groups on jaw condyle biomechanics after prominent mandibular angle osteotomy.
    Ma L; Qi X; Qin J; Zhong S; Zhang B; Zhang Y; Xia H
    J Craniomaxillofac Surg; 2013 Jul; 41(5):408-11. PubMed ID: 23218504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic.
    Wang SJ
    J Biomech; 2002 Apr; 35(4):549; author reply 551. PubMed ID: 11934427
    [No Abstract]   [Full Text] [Related]  

  • 37. Correlation of vertebral strength topography with 3-dimensional computed tomographic structure.
    Noshchenko A; Plaseied A; Patel VV; Burger E; Baldini T; Yun L
    Spine (Phila Pa 1976); 2013 Feb; 38(4):339-49. PubMed ID: 22869060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.
    Daszkiewicz K; Maquer G; Zysset PK
    Biomech Model Mechanobiol; 2017 Jun; 16(3):731-742. PubMed ID: 27785611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HR-pQCT-based homogenised finite element models provide quantitative predictions of experimental vertebral body stiffness and strength with the same accuracy as μFE models.
    Pahr DH; Dall'Ara E; Varga P; Zysset PK
    Comput Methods Biomech Biomed Engin; 2012; 15(7):711-20. PubMed ID: 21480081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical assessment of an intramedullary condylar component versus screw fixation for the condylar component of a hemiarthroplasty alloplastic TMJ replacement system.
    Ramos A; Mesnard M; Relvas C; Completo A; Simões JA
    J Craniomaxillofac Surg; 2014 Mar; 42(2):169-74. PubMed ID: 23684530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.