These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 14515764)

  • 21. An interactive multiblock approach to meshing the spine.
    Kallemeyn NA; Tadepalli SC; Shivanna KH; Grosland NM
    Comput Methods Programs Biomed; 2009 Sep; 95(3):227-35. PubMed ID: 19394107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of blood flow velocity in stenosed arteries by the use of finite elements: an observer-independent noninvasive method.
    Mühlthaler H; Quatember B; Fraedrich G; Mühlthaler M; Pfeifer B; Greiner A; Schocke MF
    Magn Reson Imaging; 2008 Oct; 26(8):1152-9. PubMed ID: 18687550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of an anatomically based geometric coronary model.
    Smith NP; Pullan AJ; Hunter PJ
    Ann Biomed Eng; 2000 Jan; 28(1):14-25. PubMed ID: 10645784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endovascular device design in the future: transformation from trial and error to computational design.
    Zarins CK; Taylor CA
    J Endovasc Ther; 2009 Feb; 16 Suppl 1():I12-21. PubMed ID: 19317584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wall pressure gradient in normal left coronary artery tree.
    Giannoglou GD; Soulis JV; Farmakis TM; Giannakoulas GA; Parcharidis GE; Louridas GE
    Med Eng Phys; 2005 Jul; 27(6):455-64. PubMed ID: 15990062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Template-based finite-element mesh generation from medical images.
    Baghdadi L; Steinman DA; Ladak HM
    Comput Methods Programs Biomed; 2005 Jan; 77(1):11-21. PubMed ID: 15639706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms.
    Wolters BJ; Rutten MC; Schurink GW; Kose U; de Hart J; van de Vosse FN
    Med Eng Phys; 2005 Dec; 27(10):871-83. PubMed ID: 16157501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computer-aided geometric modeling of the human eye and orbit.
    Parshall RF
    J Biocommun; 1991; 18(2):32-9. PubMed ID: 1874709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model.
    Pivkin IV; Richardson PD; Laidlaw DH; Karniadakis GE
    J Biomech; 2005 Jun; 38(6):1283-90. PubMed ID: 15863113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First-order system least-squares (FOSLS) for modeling blood flow.
    Heys JJ; DeGroff CG; Manteuffel TA; McCormick SF
    Med Eng Phys; 2006 Jul; 28(6):495-503. PubMed ID: 16275152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel approach for 3-d reconstruction of coronary arteries from two uncalibrated angiographic images.
    Yang J; Wang Y; Liu Y; Tang S; Chen W
    IEEE Trans Image Process; 2009 Jul; 18(7):1563-72. PubMed ID: 19414289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool.
    Fernandez JW; Hunter PJ
    Biomech Model Mechanobiol; 2005 Aug; 4(1):20-38. PubMed ID: 15959816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow.
    Finol EA; Amon CH
    Acta Cient Venez; 2003; 54(1):43-9. PubMed ID: 14515766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactive simulation of the teeth cleaning process using volumetric prototypes.
    Gockel T; Laupp U; Salb T; Burgert O; Dillmann R
    Stud Health Technol Inform; 2002; 85():160-5. PubMed ID: 15458079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FEM simulation of the eye structure with bio-heat analysis.
    Ng EY; Ooi EH
    Comput Methods Programs Biomed; 2006 Jun; 82(3):268-76. PubMed ID: 16682096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new hybrid electro-numerical model of the left ventricle.
    Kozarski M; Ferrari G; Zieliński K; Górczyńska K; Pałko KJ; Tokarz A; Darowski M
    Comput Biol Med; 2008 Sep; 38(9):979-89. PubMed ID: 18762290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wall shear stress gradient topography in the normal left coronary arterial tree: possible implications for atherogenesis.
    Farmakis TM; Soulis JV; Giannoglou GD; Zioupos GJ; Louridas GE
    Curr Med Res Opin; 2004 May; 20(5):587-96. PubMed ID: 15140324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel method for visualization of entire coronary arterial tree.
    Wischgoll T; Meyer J; Kaimovitz B; Lanir Y; Kassab GS
    Ann Biomed Eng; 2007 May; 35(5):694-710. PubMed ID: 17334680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of factors influencing finite element vertebral model predictions.
    Jones AC; Wilcox RK
    J Biomech Eng; 2007 Dec; 129(6):898-903. PubMed ID: 18067394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anatomical and physiological models for surgical simulation.
    Avis NJ; Briggs NM; Kleinermann F; Hose DR; Brown BH; Edwards MH
    Stud Health Technol Inform; 1999; 62():23-9. PubMed ID: 10538363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.