BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 14516192)

  • 1. Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge.
    Uteng M; Hauge HH; Markwick PR; Fimland G; Mantzilas D; Nissen-Meyer J; Muhle-Goll C
    Biochemistry; 2003 Oct; 42(39):11417-26. PubMed ID: 14516192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micelle-Triggered β-Hairpin to α-Helix Transition in a 14-Residue Peptide from a Choline-Binding Repeat of the Pneumococcal Autolysin LytA.
    Zamora-Carreras H; Maestro B; Strandberg E; Ulrich AS; Sanz JM; Jiménez MÁ
    Chemistry; 2015 May; 21(22):8076-89. PubMed ID: 25917218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles.
    Porcelli F; Verardi R; Shi L; Henzler-Wildman KA; Ramamoorthy A; Veglia G
    Biochemistry; 2008 May; 47(20):5565-72. PubMed ID: 18439024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the two-peptide bacteriocins lactococcin G and enterocin 1071 by site-directed mutagenesis.
    Oppegård C; Fimland G; Thorbaek L; Nissen-Meyer J
    Appl Environ Microbiol; 2007 May; 73(9):2931-8. PubMed ID: 17337546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimerization of the β-Hairpin Membrane-Active Cationic Antimicrobial Peptide Capitellacin from Marine Polychaeta: An NMR Structural and Thermodynamic Study.
    Mironov PA; Paramonov AS; Reznikova OV; Safronova VN; Panteleev PV; Bolosov IA; Ovchinnikova TV; Shenkarev ZO
    Biomolecules; 2024 Mar; 14(3):. PubMed ID: 38540752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helical hairpin structure of influenza hemagglutinin fusion peptide stabilized by charge-dipole interactions between the N-terminal amino group and the second helix.
    Lorieau JL; Louis JM; Bax A
    J Am Chem Soc; 2011 Mar; 133(9):2824-7. PubMed ID: 21319795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Backbone dynamics of the antifungal Psd1 pea defensin and its correlation with membrane interaction by NMR spectroscopy.
    de Medeiros LN; Angeli R; Sarzedas CG; Barreto-Bergter E; Valente AP; Kurtenbach E; Almeida FC
    Biochim Biophys Acta; 2010 Feb; 1798(2):105-13. PubMed ID: 19632194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of the membrane interaction sites of Pal-like protein, HI0381 of Haemophilus influenzae.
    Kang SJ; Park SJ; Lee BJ
    Mol Cells; 2008 Aug; 26(2):206-11. PubMed ID: 18596413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary Structural Preferences of Some Antibacterial Cyclooctapeptides in the Presence of Calcium(II).
    Stevens T; McNeil N; Lin X; Ngu-Schwemlein M
    Int J Med Chem; 2012; 2012():730239. PubMed ID: 25379288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives in Searching Antimicrobial Peptides (AMPs) Produced by the Microbiota.
    Gallardo-Becerra L; Cervantes-Echeverría M; Cornejo-Granados F; Vazquez-Morado LE; Ochoa-Leyva A
    Microb Ecol; 2023 Dec; 87(1):8. PubMed ID: 38036921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Enterococcus faecium E86 bacteriocins and their inhibition properties against Listeria monocytogenes and vancomycin-resistant Enterococcus.
    Farias FM; Teixeira LM; Vallim DC; Bastos MDCF; Miguel MAL; Bonelli RR
    Braz J Microbiol; 2021 Sep; 52(3):1513-1522. PubMed ID: 33900613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox Active Antimicrobial Peptides in Controlling Growth of Microorganisms at Body Barriers.
    Brzoza P; Godlewska U; Borek A; Morytko A; Zegar A; Kwiecinska P; Zabel BA; Osyczka A; Kwitniewski M; Cichy J
    Antioxidants (Basel); 2021 Mar; 10(3):. PubMed ID: 33805777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterologous Expression of the Class IIa Bacteriocins, Plantaricin 423 and Mundticin ST4SA, in
    Vermeulen RR; Van Staden ADP; Dicks L
    Front Microbiol; 2020; 11():1634. PubMed ID: 32765464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotechnological Method of Preparation and Characterization of Recombinant Antimicrobial Peptide Avicin A from Enterococcus avium.
    Balandin SV; Finkina EI; Nurmukhamedova EK; Tagaev AA; Umnyakova ES; Kokryakov VN; Shvets VI; Ovchinnikova TV
    Dokl Biochem Biophys; 2019 May; 484(1):42-44. PubMed ID: 31012010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reincarnation of Bacteriocins From the
    Collins FWJ; Mesa-Pereira B; O'Connor PM; Rea MC; Hill C; Ross RP
    Front Microbiol; 2018; 9():1298. PubMed ID: 30013519
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Passarini I; Rossiter S; Malkinson J; Zloh M
    Pharmaceutics; 2018 Jun; 10(3):. PubMed ID: 29933540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, antimicrobial activity and conformational analysis of the class IIa bacteriocin pediocin PA-1 and analogs thereof.
    Bédard F; Hammami R; Zirah S; Rebuffat S; Fliss I; Biron E
    Sci Rep; 2018 Jun; 8(1):9029. PubMed ID: 29899567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pediocin-like bacteriocins: new perspectives on mechanism of action and immunity.
    Ríos Colombo NS; Chalón MC; Navarro SA; Bellomio A
    Curr Genet; 2018 Apr; 64(2):345-351. PubMed ID: 28983718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial peptides.
    Bahar AA; Ren D
    Pharmaceuticals (Basel); 2013 Nov; 6(12):1543-75. PubMed ID: 24287494
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.