BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 14517252)

  • 1. Modulation of transcription factor function by an amino acid: activation of Put3p by proline.
    Sellick CA; Reece RJ
    EMBO J; 2003 Oct; 22(19):5147-53. PubMed ID: 14517252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The regulator of the yeast proline utilization pathway is differentially phosphorylated in response to the quality of the nitrogen source.
    Huang HL; Brandriss MC
    Mol Cell Biol; 2000 Feb; 20(3):892-9. PubMed ID: 10629046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-pathway regulation in Saccharomyces cerevisiae: activation of the proline utilization pathway by Ga14p in vivo.
    D'Alessio M; Brandriss MC
    J Bacteriol; 2000 Jul; 182(13):3748-53. PubMed ID: 10850990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation of a phosphorylatable residue in Put3p affects the magnitude of rapamycin-induced PUT1 activation in a Gat1p-dependent manner.
    Leverentz MK; Campbell RN; Connolly Y; Whetton AD; Reece RJ
    J Biol Chem; 2009 Sep; 284(36):24115-22. PubMed ID: 19574222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapamycin treatment results in GATA factor-independent hyperphosphorylation of the proline utilization pathway activator in Saccharomyces cerevisiae.
    Saxena D; Kannan KB; Brandriss MC
    Eukaryot Cell; 2003 Jun; 2(3):552-9. PubMed ID: 12796300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The proline-dependent transcription factor Put3 regulates the expression of the riboflavin transporter MCH5 in Saccharomyces cerevisiae.
    Spitzner A; Perzlmaier AF; Geillinger KE; Reihl P; Stolz J
    Genetics; 2008 Dec; 180(4):2007-17. PubMed ID: 18940788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
    Polish JA; Kim JH; Johnston M
    Genetics; 2005 Feb; 169(2):583-94. PubMed ID: 15489524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes play a role in regulating the activity of the proline utilization pathway-specific regulator in Saccharomyces cerevisiae.
    Des Etages SA; Saxena D; Huang HL; Falvey DA; Barber D; Brandriss MC
    Mol Microbiol; 2001 May; 40(4):890-9. PubMed ID: 11401696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.
    Subramanian M; Qiao WB; Khanam N; Wilkins O; Der SD; Lalich JD; Bognar AL
    Mol Microbiol; 2005 Jul; 57(1):53-69. PubMed ID: 15948949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term.
    Scherens B; Feller A; Vierendeels F; Messenguy F; Dubois E
    FEMS Yeast Res; 2006 Aug; 6(5):777-91. PubMed ID: 16879428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eukaryotic transcription factors as direct nutrient sensors.
    Sellick CA; Reece RJ
    Trends Biochem Sci; 2005 Jul; 30(7):405-12. PubMed ID: 15950477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional activators in yeast.
    Titz B; Thomas S; Rajagopala SV; Chiba T; Ito T; Uetz P
    Nucleic Acids Res; 2006; 34(3):955-67. PubMed ID: 16464826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four permeases import proline and the toxic proline analogue azetidine-2-carboxylate into yeast.
    Andréasson C; Neve EP; Ljungdahl PO
    Yeast; 2004 Feb; 21(3):193-9. PubMed ID: 14968425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive expression of yeast phospholipid biosynthetic genes by variants of Ino2 activator defective for interaction with Opi1 repressor.
    Heyken WT; Repenning A; Kumme J; Schüller HJ
    Mol Microbiol; 2005 May; 56(3):696-707. PubMed ID: 15819625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the N-terminal region of Rap1p in the transcriptional activation of glycolytic genes in Saccharomyces cerevisiae.
    Mizuno T; Kishimoto T; Shinzato T; Haw R; Chambers A; Wood J; Sinclair D; Uemura H
    Yeast; 2004 Jul; 21(10):851-66. PubMed ID: 15300680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of promoter regions containing binding sites of the heterodimeric transcription factor Ino2/Ino4 involved in yeast phospholipid biosynthesis.
    Hoppen J; Repenning A; Albrecht A; Geburtig S; Schüller HJ
    Yeast; 2005 Jun; 22(8):601-13. PubMed ID: 16034810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targets of the Gal4 transcription activator in functional transcription complexes.
    Reeves WM; Hahn S
    Mol Cell Biol; 2005 Oct; 25(20):9092-102. PubMed ID: 16199885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae.
    Wang Z; Feng LS; Matskevich V; Venkataraman K; Parasuram P; Laity JH
    J Mol Biol; 2006 Apr; 357(4):1167-83. PubMed ID: 16483601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Alternative ways of stress regulation in cells of Saccharomyces cerevisiae: transcriptional activators Msn2 and Msn4].
    Erkina TI; Lavrova MV; Erkin AM
    Tsitologiia; 2009; 51(3):271-8. PubMed ID: 19435282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence resonance energy transfer as a method for dissecting in vivo mechanisms of transcriptional activation.
    Evans SK; Aiello DP; Green MR
    Biochem Soc Symp; 2006; (73):217-24. PubMed ID: 16626301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.