These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 14517307)

  • 1. The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides.
    Gautschi M; Just S; Mun A; Ross S; Rücknagel P; Dubaquié Y; Ehrenhofer-Murray A; Rospert S
    Mol Cell Biol; 2003 Oct; 23(20):7403-14. PubMed ID: 14517307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence.
    Raue U; Oellerer S; Rospert S
    J Biol Chem; 2007 Mar; 282(11):7809-16. PubMed ID: 17229726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of the human ARD1-NATH protein acetyltransferase complex.
    Arnesen T; Anderson D; Baldersheim C; Lanotte M; Varhaug JE; Lillehaug JR
    Biochem J; 2005 Mar; 386(Pt 3):433-43. PubMed ID: 15496142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast N(alpha)-terminal acetyltransferases are associated with ribosomes.
    Polevoda B; Brown S; Cardillo TS; Rigby S; Sherman F
    J Cell Biochem; 2008 Feb; 103(2):492-508. PubMed ID: 17541948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of ORC silencing function on NatA-mediated Nalpha acetylation in Saccharomyces cerevisiae.
    Geissenhöner A; Weise C; Ehrenhofer-Murray AE
    Mol Cell Biol; 2004 Dec; 24(23):10300-12. PubMed ID: 15542839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein N-terminal Acetylation by the NatA Complex Is Critical for Selective Mitochondrial Degradation.
    Eiyama A; Okamoto K
    J Biol Chem; 2015 Oct; 290(41):25034-44. PubMed ID: 26296886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity.
    Evjenth R; Hole K; Karlsen OA; Ziegler M; Arnesen T; Lillehaug JR
    J Biol Chem; 2009 Nov; 284(45):31122-9. PubMed ID: 19744929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel human NatA Nalpha-terminal acetyltransferase complex: hNaa16p-hNaa10p (hNat2-hArd1).
    Arnesen T; Gromyko D; Kagabo D; Betts MJ; Starheim KK; Varhaug JE; Anderson D; Lillehaug JR
    BMC Biochem; 2009 May; 10():15. PubMed ID: 19480662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces cerevisiae.
    Rakwalska M; Rospert S
    Mol Cell Biol; 2004 Oct; 24(20):9186-97. PubMed ID: 15456889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence requirements for Nalpha-terminal acetylation of yeast proteins by NatA.
    Perrot M; Massoni A; Boucherie H
    Yeast; 2008 Jul; 25(7):513-27. PubMed ID: 18615858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast.
    Mullen JR; Kayne PS; Moerschell RP; Tsunasawa S; Gribskov M; Colavito-Shepanski M; Grunstein M; Sherman F; Sternglanz R
    EMBO J; 1989 Jul; 8(7):2067-75. PubMed ID: 2551674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex.
    Pfund C; Lopez-Hoyo N; Ziegelhoffer T; Schilke BA; Lopez-Buesa P; Walter WA; Wiedmann M; Craig EA
    EMBO J; 1998 Jul; 17(14):3981-9. PubMed ID: 9670014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity.
    Park EC; Szostak JW
    EMBO J; 1992 Jun; 11(6):2087-93. PubMed ID: 1600941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The translation machinery and 70 kd heat shock protein cooperate in protein synthesis.
    Nelson RJ; Ziegelhoffer T; Nicolet C; Werner-Washburne M; Craig EA
    Cell; 1992 Oct; 71(1):97-105. PubMed ID: 1394434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases.
    Van Damme P; Hole K; Gevaert K; Arnesen T
    Proteomics; 2015 Jul; 15(14):2436-46. PubMed ID: 25886145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins.
    Tripathi A; Mandon EC; Gilmore R; Rapoport TA
    J Biol Chem; 2017 May; 292(19):8007-8018. PubMed ID: 28286332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant.
    Van Damme P; Støve SI; Glomnes N; Gevaert K; Arnesen T
    Mol Cell Proteomics; 2014 Aug; 13(8):2031-41. PubMed ID: 24408909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans.
    Arnesen T; Van Damme P; Polevoda B; Helsens K; Evjenth R; Colaert N; Varhaug JE; Vandekerckhove J; Lillehaug JR; Sherman F; Gevaert K
    Proc Natl Acad Sci U S A; 2009 May; 106(20):8157-62. PubMed ID: 19420222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hsp110 cooperates with different cytosolic HSP70 systems in a pathway for de novo folding.
    Yam AY; Albanèse V; Lin HT; Frydman J
    J Biol Chem; 2005 Dec; 280(50):41252-61. PubMed ID: 16219770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ribosome-bound Hsp70 homolog Ssb of Saccharomyces cerevisiae.
    Peisker K; Chiabudini M; Rospert S
    Biochim Biophys Acta; 2010 Jun; 1803(6):662-72. PubMed ID: 20226819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.