These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 14517862)

  • 1. Action of microparticles of heparin and alginate crosslinked gel when used as injectable artificial matrices to stabilize basic fibroblast growth factor and induce angiogenesis by controlling its release.
    Chinen N; Tanihara M; Nakagawa M; Shinozaki K; Yamamoto E; Mizushima Y; Suzuki Y
    J Biomed Mater Res A; 2003 Oct; 67(1):61-8. PubMed ID: 14517862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres.
    Perets A; Baruch Y; Weisbuch F; Shoshany G; Neufeld G; Cohen S
    J Biomed Mater Res A; 2003 Jun; 65(4):489-97. PubMed ID: 12761840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel heparin/alginate gel combined with basic fibroblast growth factor promotes nerve regeneration in rat sciatic nerve.
    Ohta M; Suzuki Y; Chou H; Ishikawa N; Suzuki S; Tanihara M; Suzuki Y; Mizushima Y; Dezawa M; Ide C
    J Biomed Mater Res A; 2004 Dec; 71(4):661-8. PubMed ID: 15505831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor.
    Ho YC; Mi FL; Sung HW; Kuo PL
    Int J Pharm; 2009 Jul; 376(1-2):69-75. PubMed ID: 19450670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(L-lactide-co-glycolide) nanospheres and fibrin gel.
    Jeon O; Kang SW; Lim HW; Hyung Chung J; Kim BS
    Biomaterials; 2006 Mar; 27(8):1598-607. PubMed ID: 16146647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustained release of vascular endothelial growth factor from calcium-induced alginate hydrogels reinforced by heparin and chitosan.
    Lee KW; Yoon JJ; Lee JH; Kim SY; Jung HJ; Kim SJ; Joh JW; Lee HH; Lee DS; Lee SK
    Transplant Proc; 2004 Oct; 36(8):2464-5. PubMed ID: 15561282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor.
    Cai S; Liu Y; Zheng Shu X; Prestwich GD
    Biomaterials; 2005 Oct; 26(30):6054-67. PubMed ID: 15958243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained release of basic fibroblast growth factor and angiogenesis in a novel covalently crosslinked gel of heparin and alginate.
    Tanihara M; Suzuki Y; Yamamoto E; Noguchi A; Mizushima Y
    J Biomed Mater Res; 2001 Aug; 56(2):216-21. PubMed ID: 11340591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of functional fibrous matrices for the controlled release of basic fibroblast growth factor to improve therapeutic angiogenesis.
    Kim MS; Bhang SH; Yang HS; Rim NG; Jun I; Kim SI; Kim BS; Shin H
    Tissue Eng Part A; 2010 Oct; 16(10):2999-3010. PubMed ID: 20486788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass.
    Keshaw H; Forbes A; Day RM
    Biomaterials; 2005 Jul; 26(19):4171-9. PubMed ID: 15664644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-crosslinkable and biodegradable Pluronic/heparin hydrogels for local and sustained delivery of angiogenic growth factor.
    Yoon JJ; Chung HJ; Park TG
    J Biomed Mater Res A; 2007 Dec; 83(3):597-605. PubMed ID: 17503533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelialization of crosslinked albumin-heparin gels.
    Bos GW; Scharenborg NM; Poot AA; Engbers GH; Beugeling T; van Aken WG; Feijen J
    Thromb Haemost; 1999 Dec; 82(6):1757-63. PubMed ID: 10613666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium alginate beads as a slow-release system for delivering angiogenic molecules in vivo and in vitro.
    Downs EC; Robertson NE; Riss TL; Plunkett ML
    J Cell Physiol; 1992 Aug; 152(2):422-9. PubMed ID: 1379248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor.
    Yoon JJ; Chung HJ; Lee HJ; Park TG
    J Biomed Mater Res A; 2006 Dec; 79(4):934-42. PubMed ID: 16941589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF.
    Pike DB; Cai S; Pomraning KR; Firpo MA; Fisher RJ; Shu XZ; Prestwich GD; Peattie RA
    Biomaterials; 2006 Oct; 27(30):5242-51. PubMed ID: 16806456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization.
    Ishihara M; Obara K; Ishizuka T; Fujita M; Sato M; Masuoka K; Saito Y; Yura H; Matsui T; Hattori H; Kikuchi M; Kurita A
    J Biomed Mater Res A; 2003 Mar; 64(3):551-9. PubMed ID: 12579570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heparin-conjugated alginate multilayered microspheres for controlled release of bFGF.
    Zuo Q; Guo R; Liu Q; Hong A; Shi Y; Kong Q; Huang Y; He L; Xue W
    Biomed Mater; 2015 Jun; 10(3):035008. PubMed ID: 26041143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model.
    Ruvinov E; Leor J; Cohen S
    Biomaterials; 2010 Jun; 31(16):4573-82. PubMed ID: 20206988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injury-induced release of basic fibroblast growth factor from bovine aortic endothelium.
    Gajdusek CM; Carbon S
    J Cell Physiol; 1989 Jun; 139(3):570-9. PubMed ID: 2738102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustained release and activation of the growth factor basic fibroblast growth factor from loaded scaffolds in heart valve tissue engineering.
    Somers P; Narine K; De Somer F; de Vos F; V Nooten G
    Growth Factors; 2008 Oct; 26(5):293-9. PubMed ID: 18651289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.