BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 14517889)

  • 61. Small-diameter vascular graft engineered using human embryonic stem cell-derived mesenchymal cells.
    Sundaram S; Echter A; Sivarapatna A; Qiu C; Niklason L
    Tissue Eng Part A; 2014 Feb; 20(3-4):740-50. PubMed ID: 24125588
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Concise review: Engineering myocardial tissue: the convergence of stem cells biology and tissue engineering technology.
    Buikema JW; Van Der Meer P; Sluijter JP; Domian IJ
    Stem Cells; 2013 Dec; 31(12):2587-98. PubMed ID: 23843322
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Histological and mechanical properties of autologous living tissue biotubes.
    Chen XS; Ou TW; Zhang J; Li JX; Chen B; Yu HX; Gu YQ; Cui YQ; Zhang JY; Xu YL; Sun HC; Liu S; Wang R
    Exp Ther Med; 2013 Jun; 5(6):1613-1618. PubMed ID: 23837041
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Small-diameter vascular tissue engineering.
    Seifu DG; Purnama A; Mequanint K; Mantovani D
    Nat Rev Cardiol; 2013 Jul; 10(7):410-21. PubMed ID: 23689702
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synovial stem cells and their responses to the porosity of microfibrous scaffold.
    Lee BL; Tang Z; Wang A; Huang F; Yan Z; Wang D; Chu JS; Dixit N; Yang L; Li S
    Acta Biomater; 2013 Jul; 9(7):7264-75. PubMed ID: 23523935
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Tissue engineering and regenerative strategies to replicate biocomplexity of vascular elastic matrix assembly.
    Bashur CA; Venkataraman L; Ramamurthi A
    Tissue Eng Part B Rev; 2012 Jun; 18(3):203-17. PubMed ID: 22224468
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Development of novel biodegradable polymer scaffolds for vascular tissue engineering.
    Gui L; Zhao L; Spencer RW; Burghouwt A; Taylor MS; Shalaby SW; Niklason LE
    Tissue Eng Part A; 2011 May; 17(9-10):1191-200. PubMed ID: 21143045
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering.
    Beamish JA; He P; Kottke-Marchant K; Marchant RE
    Tissue Eng Part B Rev; 2010 Oct; 16(5):467-91. PubMed ID: 20334504
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Scaffold-free vascular tissue engineering using bioprinting.
    Norotte C; Marga FS; Niklason LE; Forgacs G
    Biomaterials; 2009 Oct; 30(30):5910-7. PubMed ID: 19664819
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts.
    Zhang X; Wang X; Keshav V; Wang X; Johanas JT; Leisk GG; Kaplan DL
    Biomaterials; 2009 Jul; 30(19):3213-23. PubMed ID: 19232717
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Human aortic smooth muscle cells promote arteriole formation by coengrafted endothelial cells.
    Shepherd BR; Jay SM; Saltzman WM; Tellides G; Pober JS
    Tissue Eng Part A; 2009 Jan; 15(1):165-73. PubMed ID: 18620481
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Long-term viability of coronary artery smooth muscle cells on poly(L-lactide-co-epsilon-caprolactone) nanofibrous scaffold indicates its potential for blood vessel tissue engineering.
    Dong Y; Yong T; Liao S; Chan CK; Ramakrishna S
    J R Soc Interface; 2008 Sep; 5(26):1109-18. PubMed ID: 18285287
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Composite fibrin scaffolds increase mechanical strength and preserve contractility of tissue engineered blood vessels.
    Yao L; Liu J; Andreadis ST
    Pharm Res; 2008 May; 25(5):1212-21. PubMed ID: 18092140
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Tissue engineering of blood vessel.
    Zhang WJ; Liu W; Cui L; Cao Y
    J Cell Mol Med; 2007; 11(5):945-57. PubMed ID: 17979876
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A system for the direct co-culture of endothelium on smooth muscle cells.
    Lavender MD; Pang Z; Wallace CS; Niklason LE; Truskey GA
    Biomaterials; 2005 Aug; 26(22):4642-53. PubMed ID: 15722134
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Human arteries engineered in vitro.
    McKee JA; Banik SS; Boyer MJ; Hamad NM; Lawson JH; Niklason LE; Counter CM
    EMBO Rep; 2003 Jun; 4(6):633-8. PubMed ID: 12776184
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of polyglycolic acid on porcine smooth muscle cell growth and differentiation.
    Higgins SP; Solan AK; Niklason LE
    J Biomed Mater Res A; 2003 Oct; 67(1):295-302. PubMed ID: 14517889
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells.
    Wang C; Cen L; Yin S; Liu Q; Liu W; Cao Y; Cui L
    Biomaterials; 2010 Feb; 31(4):621-30. PubMed ID: 19819545
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Engineering porcine arteries: effects of scaffold modification.
    Prabhakar V; Grinstaff MW; Alarcon J; Knors C; Solan AK; Niklason LE
    J Biomed Mater Res A; 2003 Oct; 67(1):303-11. PubMed ID: 14517890
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Engineered smooth muscle tissues: regulating cell phenotype with the scaffold.
    Kim BS; Nikolovski J; Bonadio J; Smiley E; Mooney DJ
    Exp Cell Res; 1999 Sep; 251(2):318-28. PubMed ID: 10471317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.