These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 14517906)

  • 1. Molecular weight effects on the glass transition of gelatin/cosolute mixtures.
    Kasapis S; Al-Marhoobi IM; Mitchell JR
    Biopolymers; 2003 Oct; 70(2):169-85. PubMed ID: 14517906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fundamental approach for the estimation of the mechanical glass transition temperature in gelatin.
    Kasapis S; Sablani SS
    Int J Biol Macromol; 2005 Jul; 36(1-2):71-8. PubMed ID: 15878197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental considerations in the effect of molecular weight on the glass transition of the gelatin/cosolute system.
    Jiang B; Kasapis S; Kontogiorgos V
    Biopolymers; 2012 May; 97(5):303-10. PubMed ID: 22189701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of pressure on the glass transition of biopolymer/co-solute. Part I: The example of gelatin.
    Kasapis S
    Int J Biol Macromol; 2007 Apr; 40(5):491-7. PubMed ID: 17210174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bridging the divide between the high- and low-solid analyses in the gelatin/kappa-carrageenan mixture.
    Kasapis S; Al-Marhoobi IM
    Biomacromolecules; 2005; 6(1):14-23. PubMed ID: 15638497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Definition of a mechanical glass transition temperature for dehydrated foods.
    Kasapis S
    J Agric Food Chem; 2004 Apr; 52(8):2262-8. PubMed ID: 15080631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building on the WLF/free volume framework: utilization of the coupling model in the relaxation dynamics of the gelatin/cosolute system.
    Kasapis S
    Biomacromolecules; 2006 May; 7(5):1671-8. PubMed ID: 16677053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of the variables of time and temperature in the mechanical properties of high sugar/polysaccharide mixtures.
    Kasapis S; Sworn G
    Biopolymers; 2000 Jan; 53(1):40-5. PubMed ID: 10644949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic properties of pectin--co-solute mixtures at iso-free-volume states.
    Kasapis S; Al-Alawi A; Guizani N; Khan AJ; Mitchell JR
    Carbohydr Res; 2000 Nov; 329(2):399-407. PubMed ID: 11117323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of sucrose and water content on molecular mobility in starch-based glasses as assessed through structure and secondary relaxation.
    Poirier-Brulez F; Roudaut G; Champion D; Tanguy M; Simatos D
    Biopolymers; 2006 Feb; 81(2):63-73. PubMed ID: 16127661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Bonnet PA; Jones W; Motherwell WD; Zifferer G
    J Phys Chem B; 2006 Oct; 110(39):19678-84. PubMed ID: 17004837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole range of chain dynamics in entangled polystyrene melts revealed from creep compliance: thermorheological complexity between glassy-relaxation region and rubber-to-fluid region. 1.
    Lin YH
    J Phys Chem B; 2005 Sep; 109(37):17654-69. PubMed ID: 16853260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular order versus vitrification in high-sugar blends of gelatin and kappa-carrageenan.
    Kasapis S; Al-Marhoobi IM; Giannouli P
    J Agric Food Chem; 1999 Dec; 47(12):4944-9. PubMed ID: 10606556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The descent into glass formation in polymer fluids.
    Freed KF
    Acc Chem Res; 2011 Mar; 44(3):194-203. PubMed ID: 21207948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexpected phase behavior of amylose in a high solids environment.
    Shrinivas P; Kasapis S
    Biomacromolecules; 2010 Feb; 11(2):421-9. PubMed ID: 20095559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of a bioactive compound (caffeine) mobility at the vicinity of the mechanical glass transition temperature induced by gelling polysaccharide.
    Jiang B; Kasapis S
    J Agric Food Chem; 2011 Nov; 59(21):11825-32. PubMed ID: 21936521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Jones W; Motherwell WD; Zifferer G
    Carbohydr Res; 2007 Aug; 342(11):1470-9. PubMed ID: 17511976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural relaxation and glass transition in high-solid gelatin systems crosslinked with genipin.
    Whitehead FA; Young SA; Kasapis S
    Int J Biol Macromol; 2019 Dec; 141():867-875. PubMed ID: 31499108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersions of polymer ionomers: I.
    Capek I
    Adv Colloid Interface Sci; 2004 Dec; 112(1-3):1-29. PubMed ID: 15581551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.