These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 1451795)

  • 21. Glycation of human lens crystallins: effect of age and aspirin treatment.
    Cherian M; Abraham EC
    Ophthalmic Res; 1993; 25(6):349-54. PubMed ID: 8309673
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonenzymatic glycosylation (glycation) of lens crystallins in diabetes and aging.
    Abraham EC; Swamy MS; Perry RE
    Prog Clin Biol Res; 1989; 304():123-39. PubMed ID: 2780679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on lens proteins of mice with hereditary cataract. I. Comparative studies on the chemical and immunochemical properties of the soluble proteins of cataractous and normal mouse lenses.
    Wada E; Sugiura T; Nakamura H; Tsumita T
    Biochim Biophys Acta; 1981 Feb; 667(2):251-9. PubMed ID: 7213804
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of aging on the chaperone-like function of human alpha-crystallin assessed by three methods.
    Derham BK; Harding JJ
    Biochem J; 1997 Dec; 328 ( Pt 3)(Pt 3):763-8. PubMed ID: 9396718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopic study on the effects of nonenzymatic glycation in human alpha-crystallin.
    Liang JN; Chylack LT
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):790-4. PubMed ID: 3570690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards a human crystallin map. Two-dimensional gel electrophoresis and computer analysis of water-soluble crystallins from normal and cataractous human lenses.
    Bloemendal H; Van de gaer K; Benedetti EL; Dunia I; Steely HT
    Ophthalmic Res; 1997; 29(4):177-90. PubMed ID: 9261842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins.
    Linetsky M; Shipova E; Cheng R; Ortwerth BJ
    Biochim Biophys Acta; 2008 Jan; 1782(1):22-34. PubMed ID: 18023423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glycation and insolubility of human lens protein.
    Kamei A
    Chem Pharm Bull (Tokyo); 1992 Oct; 40(10):2787-91. PubMed ID: 1464110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Change of water-soluble-protein, urea-soluble-protein and membrane intrinsic protein in human senile cataract.
    Zhao H; Hu S; Ren X; Yang J; Sun L
    Yan Ke Xue Bao; 1995 Sep; 11(3):124-7. PubMed ID: 8758837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cataract incidence and analysis of lens crystallins in the water-, urea- and SDS-soluble fractions of Emory mice fed a diet restricted by 40% in calories.
    Mura CV; Roh S; Smith D; Palmer V; Padhye N; Taylor A
    Curr Eye Res; 1993 Dec; 12(12):1081-91. PubMed ID: 8137632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycation of human lens proteins from diabetic and (nondiabetic) senile cataract patients.
    Duhaiman AS
    Glycoconj J; 1995 Oct; 12(5):618-21. PubMed ID: 8595250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract.
    Bessems GJ; Hoenders HJ; Wollensak J
    Exp Eye Res; 1983 Dec; 37(6):627-37. PubMed ID: 6662209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age-dependent variations in the distribution of rat lens water-soluble crystallins. Size fractionation and molecular weight determination.
    Bindels JG; Bours J; Hoenders HJ
    Mech Ageing Dev; 1983 Jan; 21(1):1-13. PubMed ID: 6865495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitation of membrane-associated crystallins from aging and cataractous human lenses.
    Takehana M; Takemoto L
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):780-4. PubMed ID: 3570688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Free epsilon amino groups and 5-hydroxymethylfurfural contents in clear and cataractous human lenses.
    Rao GN; Cotlier E
    Invest Ophthalmol Vis Sci; 1986 Jan; 27(1):98-102. PubMed ID: 3941040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein oxidation and lens opacity in humans.
    Boscia F; Grattagliano I; Vendemiale G; Micelli-Ferrari T; Altomare E
    Invest Ophthalmol Vis Sci; 2000 Aug; 41(9):2461-5. PubMed ID: 10937554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Do changes in the hydration of the diabetic human lens precede cataract formation?
    Bettelheim FA; Li L; Zeng FF
    Res Commun Mol Pathol Pharmacol; 1998 Oct; 102(1):3-14. PubMed ID: 9920342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age-related changes in human lens crystallins identified by HPLC and mass spectrometry.
    Ma Z; Hanson SR; Lampi KJ; David LL; Smith DL; Smith JB
    Exp Eye Res; 1998 Jul; 67(1):21-30. PubMed ID: 9702175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin.
    Babizhayev MA; Bours J; Utikal KJ
    Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of age, diabetes, and cataract on calcium, lipid-calcium, and protein-calcium relationships in human lenses.
    Tang D; Borchman D; Yappert MC; Vrensen GF; Rasi V
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):2059-66. PubMed ID: 12714644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.