These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 1451795)

  • 41. Aspartic acid racemization in heavy molecular weight crystallins and water insoluble protein from normal human lenses and cataracts.
    Masters PM; Bada JL; Zigler JS
    Proc Natl Acad Sci U S A; 1978 Mar; 75(3):1204-8. PubMed ID: 274711
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fluorescence study of the effects of aging and diabetes mellitus on human lens alpha-crystallin.
    Liang JN
    Curr Eye Res; 1987 Feb; 6(2):351-5. PubMed ID: 3568749
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glutathione levels of the human crystalline lens in aging and its antioxidant effect against the oxidation of lens proteins.
    Kamei A
    Biol Pharm Bull; 1993 Sep; 16(9):870-5. PubMed ID: 8268853
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Lens crystallin leakage in aqueous humor from human cataractous lenses].
    Kodama T
    Nippon Ganka Gakkai Zasshi; 1991 Nov; 95(11):1065-70. PubMed ID: 1759646
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Resistance of human betaB2-crystallin to in vivo modification.
    Zhang Z; David LL; Smith DL; Smith JB
    Exp Eye Res; 2001 Aug; 73(2):203-11. PubMed ID: 11446770
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lens aging: effects of crystallins.
    Sharma KK; Santhoshkumar P
    Biochim Biophys Acta; 2009 Oct; 1790(10):1095-108. PubMed ID: 19463898
    [TBL] [Abstract][Full Text] [Related]  

  • 47. UVA light-excited kynurenines oxidize ascorbate and modify lens proteins through the formation of advanced glycation end products: implications for human lens aging and cataract formation.
    Linetsky M; Raghavan CT; Johar K; Fan X; Monnier VM; Vasavada AR; Nagaraj RH
    J Biol Chem; 2014 Jun; 289(24):17111-23. PubMed ID: 24798334
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat.
    Ranjan M; Nayak S; Rao BS
    Mol Vis; 2006 Sep; 12():1077-85. PubMed ID: 17093392
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advanced glycation end products in diabetic and non-diabetic human subjects suffering from cataract.
    Hashim Z; Zarina S
    Age (Dordr); 2011 Sep; 33(3):377-84. PubMed ID: 20842534
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The state of sulphydryl groups in proteins isolated from normal and cataractous human lenses.
    Hum TP; Augusteyn RC
    Curr Eye Res; 1987 Sep; 6(9):1091-101. PubMed ID: 3665565
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein glycation and in vivo distribution of human lens fluorescence.
    Mota MC; Carvalho P; Ramalho JS; Cardoso E; Gaspar AM; Abreu G
    Int Ophthalmol; 1994-1995; 18(4):187-93. PubMed ID: 7797380
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrasonic and biochemical evaluation of human diabetic lens.
    Raitelaitiene R; Paunksnis A; Ivanov L; Kurapkiene S
    Medicina (Kaunas); 2005; 41(8):641-8. PubMed ID: 16160411
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation.
    Kim I; Saito T; Fujii N; Kanamoto T; Chatake T; Fujii N
    Biochem Biophys Res Commun; 2015 Oct; 466(4):622-8. PubMed ID: 26385181
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lens protein composition, glycation and high molecular weight aggregation in aging rats.
    Swamy MS; Abraham EC
    Invest Ophthalmol Vis Sci; 1987 Oct; 28(10):1693-701. PubMed ID: 3654142
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Alpha B- and βA3-crystallins containing d-aspartic acids exist in a monomeric state.
    Sakaue H; Takata T; Fujii N; Sasaki H; Fujii N
    Biochim Biophys Acta; 2015 Jan; 1854(1):1-9. PubMed ID: 25450505
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Increased levels of advanced glycation end products in human cataractous lenses.
    Franke S; Dawczynski J; Strobel J; Niwa T; Stahl P; Stein G
    J Cataract Refract Surg; 2003 May; 29(5):998-1004. PubMed ID: 12781289
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effects of aging and cataract formation on the trypsin inhibitor activity of human lens.
    Srivastava OP; Ortwerth BJ
    Exp Eye Res; 1989 Jan; 48(1):25-36. PubMed ID: 2920782
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deamidation in human gamma S-crystallin from cataractous lenses is influenced by surface exposure.
    Lapko VN; Purkiss AG; Smith DL; Smith JB
    Biochemistry; 2002 Jul; 41(27):8638-48. PubMed ID: 12093281
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One-shot LC-MS/MS analysis of post-translational modifications including oxidation and deamidation of rat lens α- and β-crystallins induced by γ-irradiation.
    Kim I; Saito T; Fujii N; Kanamoto T; Fujii N
    Amino Acids; 2016 Dec; 48(12):2855-2866. PubMed ID: 27600614
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human beta-crystallins modified by backbone cleavage, deamidation and oxidation are prone to associate.
    Zhang Z; Smith DL; Smith JB
    Exp Eye Res; 2003 Sep; 77(3):259-72. PubMed ID: 12907158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.