BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 14518052)

  • 1. Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template.
    Chen Z; Gao Y; Su R; Li C; Lin J
    Electrophoresis; 2003 Sep; 24(18):3246-52. PubMed ID: 14518052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of poly(methyl methacrylate) capillary electrophoresis microchips by in situ surface polymerization.
    Xu G; Wang J; Chen Y; Zhang L; Wang D; Chen G
    Lab Chip; 2006 Jan; 6(1):145-8. PubMed ID: 16372082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(methyl methacrylate) CE microchips replicated from poly(dimethylsiloxane) templates for the determination of cations.
    Qu S; Chen X; Chen D; Yang P; Chen G
    Electrophoresis; 2006 Dec; 27(24):4910-8. PubMed ID: 17120260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; Rodríguez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices.
    Zhang Z; Wang X; Luo Y; He S; Wang L
    Talanta; 2010 Jun; 81(4-5):1331-8. PubMed ID: 20441903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment.
    Tsao CW; Hromada L; Liu J; Kumar P; DeVoe DL
    Lab Chip; 2007 Apr; 7(4):499-505. PubMed ID: 17389967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of large-area polymer nanopillar arrays into microfluidic devices using in situ polymerization cast molding.
    Chen G; McCandless GT; McCarley RL; Soper SA
    Lab Chip; 2007 Nov; 7(11):1424-7. PubMed ID: 17960266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of PMMA CE microchips by infrared-assisted polymerization.
    Chen Y; Duan H; Zhang L; Chen G
    Electrophoresis; 2008 Dec; 29(24):4922-7. PubMed ID: 19130572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of PMMA microfluidic chips using disposable agar hydrogel templates.
    Yao X; Chen Z; Chen G
    Electrophoresis; 2009 Dec; 30(24):4225-9. PubMed ID: 20013907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of poly(methyl methacrylate) microfluidic chips by redox-initiated polymerization.
    Chen J; Lin Y; Chen G
    Electrophoresis; 2007 Aug; 28(16):2897-903. PubMed ID: 17702066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photochemically patterned poly(methyl methacrylate) surfaces used in the fabrication of microanalytical devices.
    Wei S; Vaidya B; Patel AB; Soper SA; McCarley RL
    J Phys Chem B; 2005 Sep; 109(35):16988-96. PubMed ID: 16853163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-cost fabrication of poly(methyl methacrylate) microchips using disposable gelatin gel templates.
    Chen Z; Yu Z; Chen G
    Talanta; 2010 Jun; 81(4-5):1325-30. PubMed ID: 20441902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a biomimetic surface on microfluidic chips for biofouling resistance.
    Bi H; Zhong W; Meng S; Kong J; Yang P; Liu B
    Anal Chem; 2006 May; 78(10):3399-405. PubMed ID: 16689543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasticizer-assisted bonding of poly(methyl methacrylate) microfluidic chips at low temperature.
    Duan H; Zhang L; Chen G
    J Chromatogr A; 2010 Jan; 1217(1):160-6. PubMed ID: 19945714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of DNA microarrays onto poly(methyl methacrylate) with ultraviolet patterning and microfluidics for the detection of low-abundant point mutations.
    Situma C; Wang Y; Hupert M; Barany F; McCarley RL; Soper SA
    Anal Biochem; 2005 May; 340(1):123-35. PubMed ID: 15802138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits.
    Chantiwas R; Hupert ML; Pullagurla SR; Balamurugan S; Tamarit-López J; Park S; Datta P; Goettert J; Cho YK; Soper SA
    Lab Chip; 2010 Dec; 10(23):3255-64. PubMed ID: 20938506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube/poly(methyl methacrylate) (CNT/PMMA) composite electrode fabricated by in situ polymerization for microchip capillary electrophoresis.
    Yao X; Wu H; Wang J; Qu S; Chen G
    Chemistry; 2007; 13(3):846-53. PubMed ID: 17048282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices.
    Wabuyele MB; Ford SM; Stryjewski W; Barrow J; Soper SA
    Electrophoresis; 2001 Oct; 22(18):3939-48. PubMed ID: 11700724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PMMA/PDMS valves and pumps for disposable microfluidics.
    Zhang W; Lin S; Wang C; Hu J; Li C; Zhuang Z; Zhou Y; Mathies RA; Yang CJ
    Lab Chip; 2009 Nov; 9(21):3088-94. PubMed ID: 19823724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography.
    Sundararajan N; Kim D; Berlin AA
    Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.