These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 14518735)

  • 1. Identifying multiple abdominal organs from CT image series using a multimodule contextual neural network and spatial fuzzy rules.
    Lee CC; Chung PC; Tsai HM
    IEEE Trans Inf Technol Biomed; 2003 Sep; 7(3):208-17. PubMed ID: 14518735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A segmentation framework for abdominal organs from CT scans.
    Campadelli P; Casiraghi E; Pratissoli S
    Artif Intell Med; 2010 Sep; 50(1):3-11. PubMed ID: 20542673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration.
    Sun K; Udupa JK; Odhner D; Tong Y; Zhao L; Torigian DA
    Med Phys; 2016 Mar; 43(3):1487-500. PubMed ID: 26936732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic localization of solid organs on 3D CT images by a collaborative majority voting decision based on ensemble learning.
    Zhou X; Wang S; Chen H; Hara T; Yokoyama R; Kanematsu M; Fujita H
    Comput Med Imaging Graph; 2012 Jun; 36(4):304-13. PubMed ID: 22421130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully automatic kidneys detection in 2D CT images: a statistical approach.
    Touhami W; Boukerroui D; Cocquerez JP
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):262-9. PubMed ID: 16685854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of anatomical structures in MR brain images using fuzzy parameters.
    Algorri ME; Flores-Mangas F
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1599-608. PubMed ID: 15376508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume quantification by fuzzy logic modelling in freehand ultrasound imaging.
    Betrouni N; Lopes R; Makni N; Dewalle AS; Vermandel M; Rousseau J
    Ultrasonics; 2009 Dec; 49(8):646-52. PubMed ID: 19409591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation.
    Liew AW; Yan H
    IEEE Trans Med Imaging; 2003 Sep; 22(9):1063-75. PubMed ID: 12956262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors.
    Okada T; Linguraru MG; Hori M; Summers RM; Tomiyama N; Sato Y
    Med Image Anal; 2015 Dec; 26(1):1-18. PubMed ID: 26277022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Identification of Human Erythrocytes in Microscopic Fecal Specimens.
    Liu L; Lei H; Zhang J; Yuan Y; Zhang Z; Liu J; Xie Y; Ni G; Liu Y
    J Med Syst; 2015 Nov; 39(11):146. PubMed ID: 26349804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abdominal atlas mapping in CT and MR volume images using a normalized abdominal coordinate system.
    Wang H; Bai J; Zhou Y; Zhang Y
    Comput Med Imaging Graph; 2008 Sep; 32(6):442-51. PubMed ID: 18538540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of abdominal organs from CT using a multi-level, hierarchical neural network strategy.
    Selver MA
    Comput Methods Programs Biomed; 2014 Mar; 113(3):830-52. PubMed ID: 24480371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
    Chen M; Yan Q; Qin M
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):200-211. PubMed ID: 29072503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation.
    Linguraru MG; Sandberg JK; Li Z; Shah F; Summers RM
    Med Phys; 2010 Feb; 37(2):771-83. PubMed ID: 20229887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images.
    Chu C; Oda M; Kitasaka T; Misawa K; Fujiwara M; Hayashi Y; Nimura Y; Rueckert D; Mori K
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):165-72. PubMed ID: 24579137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic multi-resolution shape modeling of multi-organ structures.
    Cerrolaza JJ; Reyes M; Summers RM; González-Ballester MÁ; Linguraru MG
    Med Image Anal; 2015 Oct; 25(1):11-21. PubMed ID: 25977156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks.
    Gibson E; Giganti F; Hu Y; Bonmati E; Bandula S; Gurusamy K; Davidson B; Pereira SP; Clarkson MJ; Barratt DC
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1822-1834. PubMed ID: 29994628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of urinary bladder mass in CT urography with SPAN.
    Cha K; Hadjiiski L; Chan HP; Cohan RH; Caoili EM; Zhou C
    Med Phys; 2015 Jul; 42(7):4271-84. PubMed ID: 26133625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation of liver and spleen based on computational anatomy models.
    Dong C; Chen YW; Foruzan AH; Lin L; Han XH; Tateyama T; Wu X; Xu G; Jiang H
    Comput Biol Med; 2015 Dec; 67():146-60. PubMed ID: 26551453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.