These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 14518793)

  • 1. Design, development, and characteristics of an in-shoe triaxial pressure measurement transducer utilizing a single element of piezoelectric copolymer film.
    Razian MA; Pepper MG
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):288-93. PubMed ID: 14518793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-shoe biaxial shear force measurement: the Kent shear system.
    Akhlaghi F; Pepper MG
    Med Biol Eng Comput; 1996 Jul; 34(4):315-7. PubMed ID: 8935501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambulatory measurement of ground reaction forces.
    Veltink PH; Liedtke C; Droog E; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):423-7. PubMed ID: 16200765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An inductive sensor for real-time measurement of plantar normal and shear forces distribution.
    Du L; Zhu X; Zhe J
    IEEE Trans Biomed Eng; 2015 May; 62(5):1316-23. PubMed ID: 25546856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of discrete vertical in-shoe stress with piezoelectric transducers.
    Gross TS; Bunch RP
    J Biomed Eng; 1988 May; 10(3):261-5. PubMed ID: 3392978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method for in-shoe shear stress measurement.
    Lord M; Hosein R; Williams RB
    J Biomed Eng; 1992 May; 14(3):181-6. PubMed ID: 1588775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of heel height on in-shoe localized triaxial stresses.
    Cong Y; Cheung JT; Leung AK; Zhang M
    J Biomech; 2011 Aug; 44(12):2267-72. PubMed ID: 21705002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of instrumented shoes for ambulatory assessment of ground reaction forces.
    Liedtke C; Fokkenrood SA; Menger JT; van der Kooij H; Veltink PH
    Gait Posture; 2007 Jun; 26(1):39-47. PubMed ID: 17010612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction of a neutral shoe to assess reference values for dynamic pedobarography.
    Kluger AK; Carl HD; Jendrissek A; Swoboda B; Hotfiel T
    Biomed Tech (Berl); 2014 Jun; 59(3):213-7. PubMed ID: 24717332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shoe-integrated sensors in physical rehabilitation.
    Viqueira Villarejo M; García Zapirain B; Méndez Zorrilla A
    Biomed Mater Eng; 2014; 24(6):3523-8. PubMed ID: 25227065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-shoe plantar shear stress sensor design, calibration and evaluation for the diabetic foot.
    Haron AH; Li L; Shuang J; Lin C; Dawes H; Mansoubi M; Crosby D; Massey G; Reeves N; Bowling F; Cooper G; Weightman A
    PLoS One; 2024; 19(9):e0309514. PubMed ID: 39231175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait analysis using a shoe-integrated wireless sensor system.
    Bamberg SJ; Benbasat AY; Scarborough DM; Krebs DE; Paradiso JA
    IEEE Trans Inf Technol Biomed; 2008 Jul; 12(4):413-23. PubMed ID: 18632321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transducers for foot pressure measurement: survey of recent developments.
    Cobb J; Claremont DJ
    Med Biol Eng Comput; 1995 Jul; 33(4):525-32. PubMed ID: 7475382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of in-shoe plantar shear in normals.
    Hosein R; Lord M
    Clin Biomech (Bristol); 2000 Jan; 15(1):46-53. PubMed ID: 10590344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of pressure insoles to calculate the complete ground reaction forces.
    Forner Cordero A; Koopman HJ; van der Helm FC
    J Biomech; 2004 Sep; 37(9):1427-32. PubMed ID: 15275851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stiffness Effects in Rocker-Soled Shoes: Biomechanical Implications.
    Lin SY; Su PF; Chung CH; Hsia CC; Chang CH
    PLoS One; 2017; 12(1):e0169151. PubMed ID: 28046009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an in-shoe pressure-sensitive device for gait analysis.
    De Rossi SM; Lenzi T; Vitiello N; Donati M; Persichetti A; Giovacchini F; Vecchi F; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5637-40. PubMed ID: 22255618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of shoe modifications on center of pressure and in-shoe plantar pressures.
    Xu H; Akai M; Kakurai S; Yokota K; Kaneko H
    Am J Phys Med Rehabil; 1999; 78(6):516-24. PubMed ID: 10574166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of gait segmentation methods for wearable foot pressure sensors.
    Crea S; De Rossi SM; Donati M; Reberšek P; Novak D; Vitiello N; Lenzi T; Podobnik J; Munih M; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5018-21. PubMed ID: 23367055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ambulatory assessment of ankle and foot dynamics.
    Schepers HM; Koopman HF; Veltink PH
    IEEE Trans Biomed Eng; 2007 May; 54(5):895-902. PubMed ID: 17518287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.