These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 14518856)

  • 61. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: a comparative study.
    Catalkaya EC; Kargi F
    J Hazard Mater; 2007 Jan; 139(2):244-53. PubMed ID: 16839682
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The formation and influence of hydrogen peroxide during ozonation of para-chlorophenol.
    Pi Y; Zhang L; Wang J
    J Hazard Mater; 2007 Mar; 141(3):707-12. PubMed ID: 16938386
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Using ozone to reduce recalcitrant compounds and to enhance biodegradability of pulp and paper effluents.
    Bijan L; Mohseni M
    Water Sci Technol; 2004; 50(3):173-82. PubMed ID: 15461412
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Catalysis of advanced oxidation reactions by ultrasound: a case study with phenol.
    Kidak R; Ince NH
    J Hazard Mater; 2007 Jul; 146(3):630-5. PubMed ID: 17543451
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Removal of NOx from flue gas with radical oxidation combined with chemical scrubber.
    Lin H; Gao X; Luo ZY; Guan SP; Cen KF; Huang Z
    J Environ Sci (China); 2004; 16(3):462-5. PubMed ID: 15272724
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparison of the ozonation and Fenton process performances for the treatment of antibiotic containing manure.
    Uslu MO; Balcioğlu IA
    Sci Total Environ; 2009 May; 407(11):3450-8. PubMed ID: 19232678
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Advanced oxidation processes: mechanistic aspects.
    von Sonntag C
    Water Sci Technol; 2008; 58(5):1015-21. PubMed ID: 18824799
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ozone treatment and biodegradation of industrial wastewater containing thioethers.
    Tuin BJ; Bos AA
    Water Sci Technol; 2004; 49(4):279-85. PubMed ID: 15077984
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.
    Tabernacka A; Zborowska E; Lebkowska M; Borawski M
    J Hazard Mater; 2014 Jan; 264():363-9. PubMed ID: 24316808
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination--a proof of concept study.
    Liang C; Lee IL
    J Contam Hydrol; 2008 Sep; 100(3-4):91-100. PubMed ID: 18649972
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Destruction of trichloroethylene during hydration of calcium oxide.
    Ko JH; Musson S; Townsend T
    J Hazard Mater; 2010 Feb; 174(1-3):876-9. PubMed ID: 19800167
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite.
    Trinh QH; Lee SB; Mok YS
    J Hazard Mater; 2015 Mar; 285():525-34. PubMed ID: 25576654
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Method of removal of volatile organic compounds by using wet scrubber coupled with photo-Fenton reaction--preventing emission of by-products.
    Tokumura M; Wada Y; Usami Y; Yamaki T; Mizukoshi A; Noguchi M; Yanagisawa Y
    Chemosphere; 2012 Nov; 89(10):1238-42. PubMed ID: 22871338
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor.
    Karuppiah J; Reddy EL; Reddy PM; Ramaraju B; Karvembu R; Subrahmanyam Ch
    J Hazard Mater; 2012 Oct; 237-238():283-9. PubMed ID: 22975253
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Retention-oxidation-adsorption process for emergent treatment of organic liquid spills.
    Liu X; Li Y; Zhang X; Lei L
    J Hazard Mater; 2011 Nov; 195():162-9. PubMed ID: 21889844
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A micromodel analysis of factors influencing NAPL removal by surfactant foam flooding.
    Jeong SW; Corapcioglu MY
    J Contam Hydrol; 2003 Jan; 60(1-2):77-96. PubMed ID: 12498575
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Catalytic oxidation of trichloroethylene from gas streams by perovskite-type catalysts.
    He CB; Pan KL; Chang MB
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11584-11594. PubMed ID: 29429106
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization of hydrophobic hypercrosslinked polymer as an adsorbent for removal of chlorinated volatile organic compounds.
    Long C; Liu P; Li Y; Li A; Zhang Q
    Environ Sci Technol; 2011 May; 45(10):4506-12. PubMed ID: 21488665
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Persulfate regeneration of trichloroethylene spent activated carbon.
    Liang C; Lin YT; Shin WH
    J Hazard Mater; 2009 Aug; 168(1):187-92. PubMed ID: 19264399
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Evaluation of bio-fenton oxidation approach for the remediation of trichloroethylene from aqueous solutions.
    Ravi S; Lonappan L; Touahar I; Fonteneau É; Vaidyanathan VK; Cabana H
    J Environ Manage; 2020 Sep; 270():110899. PubMed ID: 32721334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.