BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 14518962)

  • 21. Biotransformation of sesaminol triglucoside to mammalian lignans by intestinal microbiota.
    Jan KC; Hwang LS; Ho CT
    J Agric Food Chem; 2009 Jul; 57(14):6101-6. PubMed ID: 19537732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans.
    Clavel T; Borrmann D; Braune A; Doré J; Blaut M
    Anaerobe; 2006 Jun; 12(3):140-7. PubMed ID: 16765860
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antiproliferative activity of lignans against the breast carcinoma cell lines MCF 7 and BT 20.
    Abarzua S; Serikawa T; Szewczyk M; Richter DU; Piechulla B; Briese V
    Arch Gynecol Obstet; 2012 Apr; 285(4):1145-51. PubMed ID: 22037685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of plant and enterolignans in human serum by high-performance liquid chromatography with tandem mass spectrometric detection.
    Smeds AI; Hakala K; Hurmerinta TT; Kortela L; Saarinen NM; Mäkelä SI
    J Pharm Biomed Anal; 2006 Jun; 41(3):898-905. PubMed ID: 16460900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone.
    Wang LQ; Meselhy MR; Li Y; Qin GW; Hattori M
    Chem Pharm Bull (Tokyo); 2000 Nov; 48(11):1606-10. PubMed ID: 11086885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioconversion of pinoresinol into matairesinol by use of recombinant Escherichia coli.
    Kuo HJ; Wei ZY; Lu PC; Huang PL; Lee KT
    Appl Environ Microbiol; 2014 May; 80(9):2687-92. PubMed ID: 24561584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chiral separation of the plant lignan matairesinol by capillary electrophoresis.
    Müller U; Mrestani Y; Neubert R; Dräger B
    Electrophoresis; 2008 Sep; 29(17):3582-7. PubMed ID: 18803219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative metabolites of the mammalian lignans enterodiol and enterolactone in rat bile and urine.
    Niemeyer HB; Honig D; Lange-Böhmer A; Jacobs E; Kulling SE; Metzler M
    J Agric Food Chem; 2000 Jul; 48(7):2910-9. PubMed ID: 10898644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of enterolactone and enterodiol, the first mammalian lignans, using stable isotope dilution and gas chromatography mass spectrometry.
    Setchell KD; Lawson AM; McLaughlin LM; Patel S; Kirk DN; Axelson M
    Biomed Mass Spectrom; 1983 Mar; 10(3):227-35. PubMed ID: 6405819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production and metabolism of lignans by the human faecal flora.
    Borriello SP; Setchell KD; Axelson M; Lawson AM
    J Appl Bacteriol; 1985 Jan; 58(1):37-43. PubMed ID: 2984153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of mammalian lignan precursors in flax seed: first evidence of secoisolariciresinol diglucoside in two isomeric forms by liquid chromatograph/mass spectrometry.
    Bambagiotti-Alberti M; Coron SA; Ghiara C; Moreti G; Raffaelli A
    Rapid Commun Mass Spectrom; 1994 Dec; 8(12):929-32. PubMed ID: 7696701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioavailability of phyto-oestrogens.
    Rowland I; Faughnan M; Hoey L; Wähälä K; Williamson G; Cassidy A
    Br J Nutr; 2003 Jun; 89 Suppl 1():S45-58. PubMed ID: 12725656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial transformation of dietary lignans in gnotobiotic rats.
    Woting A; Clavel T; Loh G; Blaut M
    FEMS Microbiol Ecol; 2010 Jun; 72(3):507-14. PubMed ID: 20370826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing exposure to lignans and their metabolites in humans.
    Lampe JW; Atkinson C; Hullar MA
    J AOAC Int; 2006; 89(4):1174-81. PubMed ID: 16915861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of novel metabolites of flaxseed lignans in vitro and in vivo.
    Quartieri A; García-Villalba R; Amaretti A; Raimondi S; Leonardi A; Rossi M; Tomàs-Barberàn F
    Mol Nutr Food Res; 2016 Jul; 60(7):1590-601. PubMed ID: 26873880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats.
    Liu Z; Saarinen NM; Thompson LU
    J Nutr; 2006 Apr; 136(4):906-12. PubMed ID: 16549449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phyto-oestrogen content of berries, and plasma concentrations and urinary excretion of enterolactone after a single strawberry-meal in human subjects.
    Mazur WM; Uehara M; Wähälä K; Adlercreutz H
    Br J Nutr; 2000 Apr; 83(4):381-7. PubMed ID: 10858696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of bifidobacteria in the activation of the lignan secoisolariciresinol diglucoside.
    Roncaglia L; Amaretti A; Raimondi S; Leonardi A; Rossi M
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):159-68. PubMed ID: 21614502
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glucuronidation, oxidative metabolism, and bioactivation of enterolactone in rhesus monkeys.
    Dean B; Chang S; Doss GA; King C; Thomas PE
    Arch Biochem Biophys; 2004 Sep; 429(2):244-51. PubMed ID: 15313229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolism of the lignan macromolecule into enterolignans in the gastrointestinal lumen as determined in the simulator of the human intestinal microbial ecosystem.
    Eeckhaut E; Struijs K; Possemiers S; Vincken JP; Keukeleire DD; Verstraete W
    J Agric Food Chem; 2008 Jun; 56(12):4806-12. PubMed ID: 18494490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.