BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 14519349)

  • 1. Hand rim configuration: effects on physical strain and technique in unimpaired subjects?
    van der Woude LH; Formanoy M; de Groot S
    Med Eng Phys; 2003 Nov; 25(9):765-74. PubMed ID: 14519349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical efficiency during hand-rim wheelchair propulsion: effects of base-line subtraction and power output.
    Hintzy F; Tordi N
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):343-9. PubMed ID: 15109753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion.
    de Groot S; Veeger HE; Hollander AP; van der Woude LH
    Med Eng Phys; 2005 Jan; 27(1):41-9. PubMed ID: 15604003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel push-pull central-lever mechanism reduces peak forces and energy-cost compared to hand-rim wheelchair propulsion during a controlled lab-based experiment.
    le Rütte TA; Trigo F; Bessems L; van der Woude LHV; Vegter RJK
    J Neuroeng Rehabil; 2022 Mar; 19(1):30. PubMed ID: 35300710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological evaluation of a newly designed lever mechanism for wheelchairs.
    van der Woude LH; Veeger HE; de Boer Y; Rozendal RH
    J Med Eng Technol; 1993; 17(6):232-40. PubMed ID: 8169940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison.
    Lenton JP; van der Woude L; Fowler N; Nicholson G; Tolfrey K; Goosey-Tolfrey V
    Int J Sports Med; 2014 Mar; 35(3):223-31. PubMed ID: 23945971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological parameters depending on two different types of manual wheelchair propulsion.
    Marszałek J; Kosmol A; Mróz A; Wiszomirska I; Fiok K; Molik B
    Assist Technol; 2020 Sep; 32(5):229-235. PubMed ID: 30332556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degree of coordination between breathing and rhythmic arm movements during hand rim wheelchair propulsion.
    Fabre N; Perrey S; Arbez L; Ruiz J; Tordi N; Rouillon JD
    Int J Sports Med; 2006 Jan; 27(1):67-74. PubMed ID: 16388445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force application during handcycling and handrim wheelchair propulsion: an initial comparison.
    Arnet U; van Drongelen S; Veeger DH; van der Woude L HV
    J Appl Biomech; 2013 Dec; 29(6):687-95. PubMed ID: 23343659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion.
    Kloosterman MG; Eising H; Schaake L; Buurke JH; Rietman JS
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):428-35. PubMed ID: 22209484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical strain and mechanical efficiency in hubcrank and handrim wheelchair propulsion.
    van der Woude LH; van Kranen E; Ariëns G; Rozendal RH; Veeger HE
    J Med Eng Technol; 1995; 19(4):123-31. PubMed ID: 8544207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis.
    van der Woude LH; Bakker WH; Elkhuizen JW; Veeger HE; Gwinn T
    Am J Phys Med Rehabil; 1998; 77(3):222-34. PubMed ID: 9635557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of push frequency and strategy variations on economy and perceived exertion during wheelchair propulsion.
    Goosey-Tolfrey VL; Kirk JH
    Eur J Appl Physiol; 2003 Sep; 90(1-2):154-8. PubMed ID: 14504947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion.
    Veeger HE; van der Woude LH; Rozendal RH
    Med Sci Sports Exerc; 1992 Jan; 24(1):100-7. PubMed ID: 1548983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training.
    de Groot S; de Bruin M; Noomen SP; van der Woude LH
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):434-41. PubMed ID: 18077065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of a novel square-profile hand rim on propulsion technique of wheelchair tennis players.
    de Groot S; Bos F; Koopman J; Hoekstra AE; Vegter RJK
    Appl Ergon; 2018 Sep; 71():38-44. PubMed ID: 29764612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seat height: effects on submaximal hand rim wheelchair performance during spinal cord injury rehabilitation.
    van der Woude LH; Bouw A; van Wegen J; van As H; Veeger D; de Groot S
    J Rehabil Med; 2009 Feb; 41(3):143-9. PubMed ID: 19229446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequence of feedback-based learning of an effective hand rim wheelchair force production on mechanical efficiency.
    de Groot S; Veeger HE; Hollander AP; van der Woude LH
    Clin Biomech (Bristol, Avon); 2002 Mar; 17(3):219-26. PubMed ID: 11937260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of two wheelchair hand rim models: contact pressure distribution in straight line and curve trajectories.
    Silva DC; Paschoarelli LC; Medola FO
    Ergonomics; 2019 Dec; 62(12):1563-1571. PubMed ID: 31446854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical efficiency of two commercial lever-propulsion mechanisms for manual wheelchair locomotion.
    Lui J; MacGillivray MK; Sheel AW; Jeyasurya J; Sadeghi M; Sawatzky BJ
    J Rehabil Res Dev; 2013; 50(10):1363-72. PubMed ID: 24699972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.