These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 14522051)
1. Site-specific glycosylation of an aglycosylated human IgG1-Fc antibody protein generates neoglycoproteins with enhanced function. Watt GM; Lund J; Levens M; Kolli VS; Jefferis R; Boons GJ Chem Biol; 2003 Sep; 10(9):807-14. PubMed ID: 14522051 [TBL] [Abstract][Full Text] [Related]
2. Production, Characterization, and Biological Evaluation of Well-Defined IgG1 Fc Glycoforms as a Model System for Biosimilarity Analysis. Okbazghi SZ; More AS; White DR; Duan S; Shah IS; Joshi SB; Middaugh CR; Volkin DB; Tolbert TJ J Pharm Sci; 2016 Feb; 105(2):559-574. PubMed ID: 26869419 [TBL] [Abstract][Full Text] [Related]
3. A protein structural change in aglycosylated IgG3 correlates with loss of huFc gamma R1 and huFc gamma R111 binding and/or activation. Lund J; Tanaka T; Takahashi N; Sarmay G; Arata Y; Jefferis R Mol Immunol; 1990 Nov; 27(11):1145-53. PubMed ID: 2174119 [TBL] [Abstract][Full Text] [Related]
4. Engineering the fragment crystallizable (Fc) region of human IgG1 multimers and monomers to fine-tune interactions with sialic acid-dependent receptors. Blundell PA; Le NPL; Allen J; Watanabe Y; Pleass RJ J Biol Chem; 2017 Aug; 292(31):12994-13007. PubMed ID: 28620050 [TBL] [Abstract][Full Text] [Related]
6. Structural differences between glycosylated, disulfide-linked heterodimeric Knob-into-Hole Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products. Kuglstatter A; Stihle M; Neumann C; Müller C; Schaefer W; Klein C; Benz J; Protein Eng Des Sel; 2017 Sep; 30(9):649-656. PubMed ID: 28985438 [TBL] [Abstract][Full Text] [Related]
7. Physical stability comparisons of IgG1-Fc variants: effects of N-glycosylation site occupancy and Asp/Gln residues at site Asn 297. Alsenaidy MA; Okbazghi SZ; Kim JH; Joshi SB; Middaugh CR; Tolbert TJ; Volkin DB J Pharm Sci; 2014 Jun; 103(6):1613-1627. PubMed ID: 24740840 [TBL] [Abstract][Full Text] [Related]
8. Effects of N-Glycan Composition on Structure and Dynamics of IgG1 Fc and Their Implications for Antibody Engineering. Lee HS; Im W Sci Rep; 2017 Oct; 7(1):12659. PubMed ID: 28978918 [TBL] [Abstract][Full Text] [Related]
9. Engineering Aglycosylated IgG Variants with Wild-Type or Improved Binding Affinity to Human Fc Gamma RIIA and Fc Gamma RIIIAs. Chen TF; Sazinsky SL; Houde D; DiLillo DJ; Bird J; Li KK; Cheng GT; Qiu H; Engen JR; Ravetch JV; Wittrup KD J Mol Biol; 2017 Aug; 429(16):2528-2541. PubMed ID: 28694069 [TBL] [Abstract][Full Text] [Related]
10. Crystal Structure of a Homogeneous IgG-Fc Glycoform with the N-Glycan Designed to Maximize the Antibody Dependent Cellular Cytotoxicity. Chen CL; Hsu JC; Lin CW; Wang CH; Tsai MH; Wu CY; Wong CH; Ma C ACS Chem Biol; 2017 May; 12(5):1335-1345. PubMed ID: 28318221 [TBL] [Abstract][Full Text] [Related]
11. Effects of Glycan Structure on the Stability and Receptor Binding of an IgG4-Fc. Kang H; Larson NR; White DR; Middaugh CR; Tolbert T; Schöneich C J Pharm Sci; 2020 Jan; 109(1):677-689. PubMed ID: 31669606 [TBL] [Abstract][Full Text] [Related]
12. Optimal combination of beneficial mutations for improved ADCC effector function of aglycosylated antibodies. Yoon HW; Jo M; Ko S; Kwon HS; Lim CS; Ko BJ; Lee JC; Jung ST Mol Immunol; 2019 Oct; 114():62-71. PubMed ID: 31336250 [TBL] [Abstract][Full Text] [Related]
13. The Structural Role of Antibody N-Glycosylation in Receptor Interactions. Subedi GP; Barb AW Structure; 2015 Sep; 23(9):1573-1583. PubMed ID: 26211613 [TBL] [Abstract][Full Text] [Related]
14. Structural consequences of aglycosylated IgG Fc variants evolved for FcγRI binding. Ju MS; Na JH; Yu YG; Kim JY; Jeong C; Jung ST Mol Immunol; 2015 Oct; 67(2 Pt B):350-6. PubMed ID: 26153451 [TBL] [Abstract][Full Text] [Related]
15. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. Krapp S; Mimura Y; Jefferis R; Huber R; Sondermann P J Mol Biol; 2003 Jan; 325(5):979-89. PubMed ID: 12527303 [TBL] [Abstract][Full Text] [Related]
16. The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mimura Y; Church S; Ghirlando R; Ashton PR; Dong S; Goodall M; Lund J; Jefferis R Mol Immunol; 2000; 37(12-13):697-706. PubMed ID: 11275255 [TBL] [Abstract][Full Text] [Related]
17. Conformational effects of N-glycan core fucosylation of immunoglobulin G Fc region on its interaction with Fcγ receptor IIIa. Sakae Y; Satoh T; Yagi H; Yanaka S; Yamaguchi T; Isoda Y; Iida S; Okamoto Y; Kato K Sci Rep; 2017 Oct; 7(1):13780. PubMed ID: 29062024 [TBL] [Abstract][Full Text] [Related]
18. Antibody Fucosylation Lowers the FcγRIIIa/CD16a Affinity by Limiting the Conformations Sampled by the N162-Glycan. Falconer DJ; Subedi GP; Marcella AM; Barb AW ACS Chem Biol; 2018 Aug; 13(8):2179-2189. PubMed ID: 30016589 [TBL] [Abstract][Full Text] [Related]
19. Impact of Glycosylation on the Local Backbone Flexibility of Well-Defined IgG1-Fc Glycoforms Using Hydrogen Exchange-Mass Spectrometry. More AS; Toth RT; Okbazghi SZ; Middaugh CR; Joshi SB; Tolbert TJ; Volkin DB; Weis DD J Pharm Sci; 2018 Sep; 107(9):2315-2324. PubMed ID: 29751008 [TBL] [Abstract][Full Text] [Related]
20. Correlating the Impact of Well-Defined Oligosaccharide Structures on Physical Stability Profiles of IgG1-Fc Glycoforms. More AS; Toprani VM; Okbazghi SZ; Kim JH; Joshi SB; Middaugh CR; Tolbert TJ; Volkin DB J Pharm Sci; 2016 Feb; 105(2):588-601. PubMed ID: 26869421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]