BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 14522128)

  • 1. Transport mechanism(s) of poly (amidoamine) dendrimers across Caco-2 cell monolayers.
    El-Sayed M; Rhodes CA; Ginski M; Ghandehari H
    Int J Pharm; 2003 Oct; 265(1-2):151-7. PubMed ID: 14522128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers.
    El-Sayed M; Ginski M; Rhodes C; Ghandehari H
    J Control Release; 2002 Jun; 81(3):355-65. PubMed ID: 12044574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: Influence of size, charge and fluorescent labeling.
    Kitchens KM; Kolhatkar RB; Swaan PW; Eddington ND; Ghandehari H
    Pharm Res; 2006 Dec; 23(12):2818-26. PubMed ID: 17094034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeability of surface-modified polyamidoamine (PAMAM) dendrimers across Caco-2 cell monolayers.
    Pisal DS; Yellepeddi VK; Kumar A; Kaushik RS; Hildreth MB; Guan X; Palakurthi S
    Int J Pharm; 2008 Feb; 350(1-2):113-21. PubMed ID: 17913410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transepithelial and endothelial transport of poly (amidoamine) dendrimers.
    Kitchens KM; El-Sayed ME; Ghandehari H
    Adv Drug Deliv Rev; 2005 Dec; 57(15):2163-76. PubMed ID: 16289433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity.
    Jevprasesphant R; Penny J; Attwood D; McKeown NB; D'Emanuele A
    Pharm Res; 2003 Oct; 20(10):1543-50. PubMed ID: 14620505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of surface engineered polyamidoamine (PAMAM) dendrimers across IPEC-J2 cell monolayers.
    Pisal DS; Yellepeddi VK; Kumar A; Palakurthi S
    Drug Deliv; 2008 Nov; 15(8):515-22. PubMed ID: 18720134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of poly amidoamine dendrimers across Madin-Darby canine kidney cells.
    Tajarobi F; El-Sayed M; Rege BD; Polli JE; Ghandehari H
    Int J Pharm; 2001 Mar; 215(1-2):263-7. PubMed ID: 11250111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative evaluation of the effect of poly(amidoamine) dendrimers on the porosity of epithelial monolayers.
    Lin YL; Khanafer K; El-Sayed ME
    Nanoscale; 2010 May; 2(5):755-62. PubMed ID: 20648321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Caco-2 cells.
    Kitchens KM; Kolhatkar RB; Swaan PW; Ghandehari H
    Mol Pharm; 2008; 5(2):364-9. PubMed ID: 18173246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of dendrimer nanocarriers through epithelial cells via the transcellular route.
    Jevprasesphant R; Penny J; Attwood D; D'Emanuele A
    J Control Release; 2004 Jun; 97(2):259-67. PubMed ID: 15196753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue.
    Hubbard D; Enda M; Bond T; Moghaddam SP; Conarton J; Scaife C; Volckmann E; Ghandehari H
    Mol Pharm; 2015 Nov; 12(11):4099-107. PubMed ID: 26414679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells.
    Kitchens KM; Foraker AB; Kolhatkar RB; Swaan PW; Ghandehari H
    Pharm Res; 2007 Nov; 24(11):2138-45. PubMed ID: 17701324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability.
    D'Emanuele A; Jevprasesphant R; Penny J; Attwood D
    J Control Release; 2004 Mar; 95(3):447-53. PubMed ID: 15023456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Change in tolbutamide permeability in rat jejunum and Caco-2 cells by Sho-saiko-to (Xiao Chai Hu Tang), a Chinese traditional medicine.
    Nishimura N; Uemura T; Iwamoto K; Naora K
    J Pharm Pharmacol; 2010 May; 62(5):651-7. PubMed ID: 20609069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transepithelial transport of PEGylated anionic poly(amidoamine) dendrimers: implications for oral drug delivery.
    Sweet DM; Kolhatkar RB; Ray A; Swaan P; Ghandehari H
    J Control Release; 2009 Aug; 138(1):78-85. PubMed ID: 19393702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of P-glycoprotein-mediated secretion in absorptive drug permeability: An approach using passive membrane permeability and affinity to P-glycoprotein.
    Döppenschmitt S; Spahn-Langguth H; Regårdh CG; Langguth P
    J Pharm Sci; 1999 Oct; 88(10):1067-72. PubMed ID: 10514357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivery of paclitaxel across cellular barriers using a dendrimer-based nanocarrier.
    Teow HM; Zhou Z; Najlah M; Yusof SR; Abbott NJ; D'Emanuele A
    Int J Pharm; 2013 Jan; 441(1-2):701-11. PubMed ID: 23089576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efflux ratio cannot assess P-glycoprotein-mediated attenuation of absorptive transport: asymmetric effect of P-glycoprotein on absorptive and secretory transport across Caco-2 cell monolayers.
    Troutman MD; Thakker DR
    Pharm Res; 2003 Aug; 20(8):1200-9. PubMed ID: 12948018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular Ca2+ release mediates cationic but not anionic poly(amidoamine) (PAMAM) dendrimer-induced tight junction modulation.
    Avaritt BR; Swaan PW
    Pharm Res; 2014 Sep; 31(9):2429-38. PubMed ID: 24648136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.