These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 14522131)
1. Immunophenotype and functional properties of feline dendritic cells derived from blood and bone marrow. Bienzle D; Reggeti F; Clark ME; Chow C Vet Immunol Immunopathol; 2003 Nov; 96(1-2):19-30. PubMed ID: 14522131 [TBL] [Abstract][Full Text] [Related]
2. Culture and comparison of feline myeloid dendritic cells vs macrophages. Sprague WS; Pope M; Hoover EA J Comp Pathol; 2005; 133(2-3):136-45. PubMed ID: 16038926 [TBL] [Abstract][Full Text] [Related]
3. Generation of dendritic cells from rabbit bone marrow mononuclear cell cultures supplemented with hGM-CSF and hIL-4. Cody V; Shen H; Shlyankevich M; Tigelaar RE; Brandsma JL; Hanlon DJ Vet Immunol Immunopathol; 2005 Feb; 103(3-4):163-72. PubMed ID: 15621303 [TBL] [Abstract][Full Text] [Related]
4. [In vitro inducing differentiation of bone marrow mononuclear cells of chronic myeloid leukemia]. Wu CY; Zhang LS; Zhang YF; Chai Y; Yi LC; Song FX Ai Zheng; 2005 Apr; 24(4):425-31. PubMed ID: 15820064 [TBL] [Abstract][Full Text] [Related]
5. Immunophenotypical and functional heterogeneity of dendritic cells generated from murine bone marrow cultured with different cytokine combinations: implications for anti-tumoral cell therapy. Masurier C; Pioche-Durieu C; Colombo BM; Lacave R; Lemoine FM; Klatzmann D; Guigon M Immunology; 1999 Apr; 96(4):569-77. PubMed ID: 10233743 [TBL] [Abstract][Full Text] [Related]
6. Dendritic cells as the terminal stage of monocyte differentiation. Palucka KA; Taquet N; Sanchez-Chapuis F; Gluckman JC J Immunol; 1998 May; 160(9):4587-95. PubMed ID: 9574566 [TBL] [Abstract][Full Text] [Related]
7. Antigen presentation and immune regulatory capacity of immature and mature-enriched antigen presenting (dendritic) cells derived from human bone marrow. Jin Y; Fuller L; Ciancio G; Burke GW; Tzakis AG; Ricordi C; Miller J; Esquenzai V Hum Immunol; 2004 Feb; 65(2):93-103. PubMed ID: 14969764 [TBL] [Abstract][Full Text] [Related]
8. van den Biggelaar RHGA; Arkesteijn GJA; Rutten VPMG; van Eden W; Jansen CA Front Immunol; 2020; 11():141. PubMed ID: 32174908 [TBL] [Abstract][Full Text] [Related]
9. Effect of interleukin-7 on the in vitro development and maturation of monocyte derived human dendritic cells. Li L; Masucci MG; Levitsky V Scand J Immunol; 2000 Apr; 51(4):361-71. PubMed ID: 10736108 [TBL] [Abstract][Full Text] [Related]
11. Generation of dendritic cells from adherent cells of cord blood by culture with granulocyte-macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha. Zheng Z; Takahashi M; Narita M; Toba K; Liu A; Furukawa T; Koike T; Aizawa Y J Hematother Stem Cell Res; 2000 Aug; 9(4):453-64. PubMed ID: 10982243 [TBL] [Abstract][Full Text] [Related]
12. Hyaluronan Binding Identifies a Functionally Distinct Alveolar Macrophage-like Population in Bone Marrow-Derived Dendritic Cell Cultures. Poon GF; Dong Y; Marshall KC; Arif A; Deeg CM; Dosanjh M; Johnson P J Immunol; 2015 Jul; 195(2):632-42. PubMed ID: 26085682 [TBL] [Abstract][Full Text] [Related]
13. The influence of different culture microenvironments on the generation of dendritic cells from non-small-cell lung cancer patients. Krawczyk P; Wojas K; Milanowski J; RoliĆski J Arch Immunol Ther Exp (Warsz); 2007; 55(6):405-15. PubMed ID: 18060367 [TBL] [Abstract][Full Text] [Related]
14. Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation. Wang YS; Chi KH; Liao KW; Liu CC; Cheng CL; Lin YC; Cheng CH; Chu RM Can J Vet Res; 2007 Jul; 71(3):165-74. PubMed ID: 17695590 [TBL] [Abstract][Full Text] [Related]
15. Low levels of interferon-alpha induce CD86 (B7.2) expression and accelerates dendritic cell maturation from human peripheral blood mononuclear cells. Radvanyi LG; Banerjee A; Weir M; Messner H Scand J Immunol; 1999 Nov; 50(5):499-509. PubMed ID: 10564553 [TBL] [Abstract][Full Text] [Related]
17. Aqueous extract of Phyllanthus niruri (Euphorbiaceae) enhances the phenotypic and functional maturation of bone marrow-derived dendritic cells and their antigen-presentation function. Nworu CS; Akah PA; Okoye FB; Esimone CO Immunopharmacol Immunotoxicol; 2010 Sep; 32(3):393-401. PubMed ID: 20095802 [TBL] [Abstract][Full Text] [Related]
18. Freezing and thawing of bone marrow-derived murine dendritic cells with subsequent retention of immunophenotype and of antigen processing and presentation characteristics. Sai T; Milling SW; Mintz B J Immunol Methods; 2002 Jun; 264(1-2):153-62. PubMed ID: 12191518 [TBL] [Abstract][Full Text] [Related]
19. Propagation of dendritic cell progenitors from normal mouse liver using granulocyte/macrophage colony-stimulating factor and their maturational development in the presence of type-1 collagen. Lu L; Woo J; Rao AS; Li Y; Watkins SC; Qian S; Starzl TE; Demetris AJ; Thomson AW J Exp Med; 1994 Jun; 179(6):1823-34. PubMed ID: 8195710 [TBL] [Abstract][Full Text] [Related]
20. Bone marrow-derived immature dendritic cells prime in vivo alloreactive T cells for interleukin-4-dependent rejection of major histocompatibility complex class II antigen-disparate cardiac allograft. Buonocore S; Flamand V; Goldman M; Braun MY Transplantation; 2003 Feb; 75(3):407-13. PubMed ID: 12589166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]