These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 14522210)

  • 21. The effect of recovery time and test conditions on viscoelastic measures of tensile damage in cortical bone.
    Joo W; Jepsen KJ; Davy DT
    J Biomech; 2007; 40(12):2731-7. PubMed ID: 17412349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterogeneity of the mechanical properties of demineralized bone.
    Catanese J; Iverson EP; Ng RK; Keaveny TM
    J Biomech; 1999 Dec; 32(12):1365-9. PubMed ID: 10569717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur.
    Vahey JW; Lewis JL; Vanderby R
    J Biomech; 1987; 20(1):29-33. PubMed ID: 3558426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High frequency ultrasound prediction of mechanical properties of cortical bone with varying amount of mineral content.
    Kotha SP; DePaula CA; Mann AB; Guzelsu N
    Ultrasound Med Biol; 2008 Apr; 34(4):630-7. PubMed ID: 18055098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation.
    Ford CM; Keaveny TM
    J Biomech; 1996 Oct; 29(10):1309-17. PubMed ID: 8884476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A critical distance study of stress concentrations in bone.
    Kasiri S; Taylor D
    J Biomech; 2008; 41(3):603-9. PubMed ID: 18023446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ash content modulation of torsionally derived effective material properties in cortical mouse bone.
    Battaglia TC; Tsou AC; Taylor EA; Mikic B
    J Biomech Eng; 2003 Oct; 125(5):615-9. PubMed ID: 14618920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effective mechanical properties of diaphyseal cortical bone in the canine femur.
    Autefage A; Palierne S; Charron C; Swider P
    Vet J; 2012 Nov; 194(2):202-9. PubMed ID: 22595311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical properties of metaphyseal bone in the proximal femur.
    Lotz JC; Gerhart TN; Hayes WC
    J Biomech; 1991; 24(5):317-29. PubMed ID: 2050708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanical Analysis Using FEA and Experiments of Metal Plate and Bone Strut Repair of a Femur Midshaft Segmental Defect.
    Coquim J; Clemenzi J; Salahi M; Sherif A; Tavakkoli Avval P; Shah S; Schemitsch EH; Bagheri ZS; Bougherara H; Zdero R
    Biomed Res Int; 2018; 2018():4650308. PubMed ID: 30420962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimentally determined microcracking around a circular hole in a flat plate of bone: comparison with predicted stresses.
    Zioupos P; Currey JD; Mirza MS; Barton DC
    Philos Trans R Soc Lond B Biol Sci; 1995 Mar; 347(1322):383-96. PubMed ID: 7597104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical properties of collagen from decalcified rat femur in relation to age and in vitro maturation.
    Danielsen CC; Andreassen TT; Mosekilde L
    Calcif Tissue Int; 1986 Aug; 39(2):69-73. PubMed ID: 3091223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mixed-mode fracture of human cortical bone.
    Zimmermann EA; Launey ME; Barth HD; Ritchie RO
    Biomaterials; 2009 Oct; 30(29):5877-84. PubMed ID: 19573911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue.
    Bayraktar HH; Morgan EF; Niebur GL; Morris GE; Wong EK; Keaveny TM
    J Biomech; 2004 Jan; 37(1):27-35. PubMed ID: 14672565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of creep strain during tensile fatigue of cortical bone.
    Cotton JR; Zioupos P; Winwood K; Taylor M
    J Biomech; 2003 Jul; 36(7):943-9. PubMed ID: 12757803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Similar damage initiation but different failure behavior in trabecular and cortical bone tissue.
    Szabó ME; Zekonyte J; Katsamenis OL; Taylor M; Thurner PJ
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1787-96. PubMed ID: 22098878
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone micro-damage assessment using non-linear resonant ultrasound spectroscopy (NRUS) techniques: a feasibility study.
    Muller M; Tencate JA; Darling TW; Sutin A; Guyer RA; Talmant M; Laugier P; Johnson PA
    Ultrasonics; 2006 Dec; 44 Suppl 1():e245-9. PubMed ID: 16876843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear behavior of trabecular bone at small strains.
    Morgan EF; Yeh OC; Chang WC; Keaveny TM
    J Biomech Eng; 2001 Feb; 123(1):1-9. PubMed ID: 11277293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of the lamellar interface during torsional yielding of human cortical bone.
    Jepsen KJ; Davy DT; Krzypow DJ
    J Biomech; 1999 Mar; 32(3):303-10. PubMed ID: 10093030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.