These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 14522210)

  • 41. Distribution of atypical fractures and cortical stress lesions in the femur: implications on pathophysiology.
    Koh JS; Goh SK; Png MA; Ng AC; Howe TS
    Singapore Med J; 2011 Feb; 52(2):77-80. PubMed ID: 21373731
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Continuum damage interactions between tension and compression in osteonal bone.
    Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of osteon area fraction and degree of orientation of HAp crystals on mechanical properties in bovine femur.
    Yamada S; Tadano S; Fujisaki K; Kodaki Y
    J Biomech; 2013 Jan; 46(1):31-5. PubMed ID: 23084783
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tensile fracture of cancellous bone.
    Carter DR; Schwab GH; Spengler DM
    Acta Orthop Scand; 1980 Oct; 51(5):733-41. PubMed ID: 7468167
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Predicting fracture of the femoral neck.
    Stepanskiy L; Seliktar RR
    J Biomech; 2007; 40(8):1813-23. PubMed ID: 17046773
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Residual strength of equine bone is not reduced by intense fatigue loading: implications for stress fracture.
    Martin RB; Gibson VA; Stover SM; Gibeling JC; Griffin LV
    J Biomech; 1997 Feb; 30(2):109-14. PubMed ID: 9001930
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparison of the fatigue behavior of human trabecular and cortical bone tissue.
    Choi K; Goldstein SA
    J Biomech; 1992 Dec; 25(12):1371-81. PubMed ID: 1491015
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effects of damage accumulation on the tensile strength and toughness of compact bovine bone.
    Zhang W; Tekalur SA; Baumann M; McCabe LR
    J Biomech; 2013 Mar; 46(5):964-72. PubMed ID: 23337851
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anisotropy of bovine cortical bone tissue damage properties.
    Szabó ME; Thurner PJ
    J Biomech; 2013 Jan; 46(1):2-6. PubMed ID: 23063771
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus.
    Keaveny TM; Wachtel EF; Ford CM; Hayes WC
    J Biomech; 1994 Sep; 27(9):1137-46. PubMed ID: 7929463
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Variability and anisotropy of mechanical behavior of cortical bone in tension and compression.
    Li S; Demirci E; Silberschmidt VV
    J Mech Behav Biomed Mater; 2013 May; 21():109-20. PubMed ID: 23563047
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Constitutive laws and failure models for compact bones subjected to dynamic loading.
    Pithioux M; Chabrand P; Jean M
    Comput Methods Biomech Biomed Engin; 2002 Oct; 5(5):351-9. PubMed ID: 12745432
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tensile experiments and SEM fractography on bovine subchondral bone.
    Braidotti P; Bemporad E; D'Alessio T; Sciuto SA; Stagni L
    J Biomech; 2000 Sep; 33(9):1153-7. PubMed ID: 10854890
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fatigue data analysis of canine femurs under four-point bending.
    Pidaparti RM; Akyuz U; Naick PA; Burr DB
    Biomed Mater Eng; 2000; 10(1):43-50. PubMed ID: 10950206
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Change in creep behavior of plexiform bone with phosphate ion treatment.
    Regimbal RL; DePaula CA; Guzelsu N
    Biomed Mater Eng; 2003; 13(1):11-25. PubMed ID: 12652019
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanostructure and elastic modulus of single trabecula in bovine cancellous bone.
    Yamada S; Tadano S; Fukuda S
    J Biomech; 2014 Nov; 47(14):3482-7. PubMed ID: 25267574
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Micro-compression: a novel technique for the nondestructive assessment of local bone failure.
    Müller R; Gerber SC; Hayes WC
    Technol Health Care; 1998 Dec; 6(5-6):433-44. PubMed ID: 10100946
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of cortical bone elasticity and strength: mechanical testing and ultrasound provide complementary data.
    Grimal Q; Haupert S; Mitton D; Vastel L; Laugier P
    Med Eng Phys; 2009 Nov; 31(9):1140-7. PubMed ID: 19683957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.