BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 14523045)

  • 1. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans.
    Luberto C; Martinez-Mariño B; Taraskiewicz D; Bolaños B; Chitano P; Toffaletti DL; Cox GM; Perfect JR; Hannun YA; Balish E; Del Poeta M
    J Clin Invest; 2003 Oct; 112(7):1080-94. PubMed ID: 14523045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. App1: an antiphagocytic protein that binds to complement receptors 3 and 2.
    Stano P; Williams V; Villani M; Cymbalyuk ES; Qureshi A; Huang Y; Morace G; Luberto C; Tomlinson S; Del Poeta M
    J Immunol; 2009 Jan; 182(1):84-91. PubMed ID: 19109138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of allergen 1 confers a hypervirulent phenotype that resembles mucoid switch variants of Cryptococcus neoformans.
    Jain N; Li L; Hsueh YP; Guerrero A; Heitman J; Goldman DL; Fries BC
    Infect Immun; 2009 Jan; 77(1):128-40. PubMed ID: 18955480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of glucose in the expression of Cryptococcus neoformans antiphagocytic protein 1, App1.
    Williams V; Del Poeta M
    Eukaryot Cell; 2011 Mar; 10(3):293-301. PubMed ID: 21239626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depletion of alveolar macrophages decreases the dissemination of a glucosylceramide-deficient mutant of Cryptococcus neoformans in immunodeficient mice.
    Kechichian TB; Shea J; Del Poeta M
    Infect Immun; 2007 Oct; 75(10):4792-8. PubMed ID: 17664261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of sphingosine-1-phosphate (S1P) and S1P receptor 2 in the phagocytosis of Cryptococcus neoformans by alveolar macrophages.
    McQuiston T; Luberto C; Del Poeta M
    Microbiology (Reading); 2011 May; 157(Pt 5):1416-1427. PubMed ID: 21292747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryptococcus neoformans growth and protection from innate immunity are dependent on expression of a virulence-associated DEAD-box protein, Vad1.
    Qiu J; Olszewski MA; Williamson PR
    Infect Immun; 2013 Mar; 81(3):777-88. PubMed ID: 23264050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of host sphingosine kinase 1 in the lung response against Cryptococcosis.
    McQuiston T; Luberto C; Del Poeta M
    Infect Immun; 2010 May; 78(5):2342-52. PubMed ID: 20194596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Transcription Factor Pdr802 Regulates Titan Cell Formation and Pathogenicity of Cryptococcus neoformans.
    Reuwsaat JCV; Agustinho DP; Motta H; Chang AL; Brown H; Brent MR; Kmetzsch L; Doering TL
    mBio; 2021 Mar; 12(2):. PubMed ID: 33688010
    [No Abstract]   [Full Text] [Related]  

  • 10. X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans Infection.
    Szymczak WA; Davis MJ; Lundy SK; Dufaud C; Olszewski M; Pirofski LA
    mBio; 2013 Jul; 4(4):. PubMed ID: 23820392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fbp1-mediated ubiquitin-proteasome pathway controls Cryptococcus neoformans virulence by regulating fungal intracellular growth in macrophages.
    Liu TB; Xue C
    Infect Immun; 2014 Feb; 82(2):557-68. PubMed ID: 24478071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titan cell production enhances the virulence of Cryptococcus neoformans.
    Crabtree JN; Okagaki LH; Wiesner DL; Strain AK; Nielsen JN; Nielsen K
    Infect Immun; 2012 Nov; 80(11):3776-85. PubMed ID: 22890995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complementation of a capsule deficient Cryptococcus neoformans with CAP64 restores virulence in a murine lung infection.
    Wilder JA; Olson GK; Chang YC; Kwon-Chung KJ; Lipscomb MF
    Am J Respir Cell Mol Biol; 2002 Mar; 26(3):306-14. PubMed ID: 11867339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amoeba Predation of Cryptococcus neoformans Results in Pleiotropic Changes to Traits Associated with Virulence.
    Fu MS; Liporagi-Lopes LC; Dos Santos SR; Tenor JL; Perfect JR; Cuomo CA; Casadevall A
    mBio; 2021 Apr; 12(2):. PubMed ID: 33906924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core
    Thak EJ; Lee SB; Xu-Vanpala S; Lee DJ; Chung SY; Bahn YS; Oh DB; Shinohara ML; Kang HA
    mBio; 2020 May; 11(3):. PubMed ID: 32398313
    [No Abstract]   [Full Text] [Related]  

  • 16. Cryptococcus neoformans and Cryptococcus gattii clinical isolates from Thailand display diverse phenotypic interactions with macrophages.
    Hansakon A; Mutthakalin P; Ngamskulrungroj P; Chayakulkeeree M; Angkasekwinai P
    Virulence; 2019 Dec; 10(1):26-36. PubMed ID: 30520685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant protein D facilitates Cryptococcus neoformans infection.
    Geunes-Boyer S; Beers MF; Perfect JR; Heitman J; Wright JR
    Infect Immun; 2012 Jul; 80(7):2444-53. PubMed ID: 22547543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naïve B cells reduce fungal dissemination in Cryptococcus neoformans infected Rag1
    Dufaud C; Rivera J; Rohatgi S; Pirofski LA
    Virulence; 2018 Jan; 9(1):173-184. PubMed ID: 28837391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Pathogen Genomic Differences That Impact Human Immune Response and Disease during Cryptococcus neoformans Infection.
    Gerstein AC; Jackson KM; McDonald TR; Wang Y; Lueck BD; Bohjanen S; Smith KD; Akampurira A; Meya DB; Xue C; Boulware DR; Nielsen K
    mBio; 2019 Jul; 10(4):. PubMed ID: 31311883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DAP12 Inhibits Pulmonary Immune Responses to Cryptococcus neoformans.
    Heung LJ; Hohl TM
    Infect Immun; 2016 Jun; 84(6):1879-86. PubMed ID: 27068093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.