These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 14523069)

  • 1. Differential cortical and subcortical activations in learning rotations and gains for reaching: a PET study.
    Krakauer JW; Ghilardi MF; Mentis M; Barnes A; Veytsman M; Eidelberg D; Ghez C
    J Neurophysiol; 2004 Feb; 91(2):924-33. PubMed ID: 14523069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning of visuomotor transformations for vectorial planning of reaching trajectories.
    Krakauer JW; Pine ZM; Ghilardi MF; Ghez C
    J Neurosci; 2000 Dec; 20(23):8916-24. PubMed ID: 11102502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A PET study of visuomotor learning under optical rotation.
    Inoue K; Kawashima R; Satoh K; Kinomura S; Sugiura M; Goto R; Ito M; Fukuda H
    Neuroimage; 2000 May; 11(5 Pt 1):505-16. PubMed ID: 10806036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time course of changes in brain activity and functional connectivity associated with long-term adaptation to a rotational transformation.
    Della-Maggiore V; McIntosh AR
    J Neurophysiol; 2005 Apr; 93(4):2254-62. PubMed ID: 15574799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain representations for acquiring and recalling visual-motor adaptations.
    Bédard P; Sanes JN
    Neuroimage; 2014 Nov; 101():225-35. PubMed ID: 25019676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent component analysis of dynamic brain responses during visuomotor adaptation.
    Contreras-Vidal JL; Kerick SE
    Neuroimage; 2004 Mar; 21(3):936-45. PubMed ID: 15006660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalization patterns for reach adaptation and proprioceptive recalibration differ after visuomotor learning.
    Cressman EK; Henriques DY
    J Neurophysiol; 2015 Jul; 114(1):354-65. PubMed ID: 25972587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
    Bapi RS; Miyapuram KP; Graydon FX; Doya K
    Neuroimage; 2006 Aug; 32(2):714-27. PubMed ID: 16798015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the cerebellum in implicit motor skill learning: a PET study.
    Matsumura M; Sadato N; Kochiyama T; Nakamura S; Naito E; Matsunami K; Kawashima R; Fukuda H; Yonekura Y
    Brain Res Bull; 2004 Jul; 63(6):471-83. PubMed ID: 15249112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning of scaling factors and reference axes for reaching movements.
    Pine ZM; Krakauer JW; Gordon J; Ghez C
    Neuroreport; 1996 Oct; 7(14):2357-61. PubMed ID: 8951852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain activation during execution and motor imagery of novel and skilled sequential hand movements.
    Lacourse MG; Orr EL; Cramer SC; Cohen MJ
    Neuroimage; 2005 Sep; 27(3):505-19. PubMed ID: 16046149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reorganization of finger coordination patterns during adaptation to rotation and scaling of a newly learned sensorimotor transformation.
    Liu X; Mosier KM; Mussa-Ivaldi FA; Casadio M; Scheidt RA
    J Neurophysiol; 2011 Jan; 105(1):454-73. PubMed ID: 20980541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acquisition and generalization of visuomotor transformations by nonhuman primates.
    Paz R; Nathan C; Boraud T; Bergman H; Vaadia E
    Exp Brain Res; 2005 Feb; 161(2):209-19. PubMed ID: 15480596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent adaptation to opposing visual displacements during an alternating movement.
    Galea JM; Miall RC
    Exp Brain Res; 2006 Nov; 175(4):676-88. PubMed ID: 16835793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroanatomical correlates of motor acquisition and motor transfer.
    Seidler RD; Noll DC
    J Neurophysiol; 2008 Apr; 99(4):1836-45. PubMed ID: 18272874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor sequence learning with the nondominant left hand. A PET functional imaging study.
    Grafton ST; Hazeltine E; Ivry RB
    Exp Brain Res; 2002 Oct; 146(3):369-78. PubMed ID: 12232693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates associated with intermanual transfer of sensorimotor adaptation.
    Anguera JA; Russell CA; Noll DC; Seidler RD
    Brain Res; 2007 Dec; 1185():136-51. PubMed ID: 17996854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term adaptation to prism-induced inversion of the retinal images.
    Richter H; Magnusson S; Imamura K; Fredrikson M; Okura M; Watanabe Y; Långström B
    Exp Brain Res; 2002 Jun; 144(4):445-57. PubMed ID: 12037630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concurrent adaptation to opposing visuomotor rotations by varying hand and body postures.
    Ayala MN; 't Hart BM; Henriques DY
    Exp Brain Res; 2015 Dec; 233(12):3433-45. PubMed ID: 26289481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas.
    Tanaka H; Sejnowski TJ; Krakauer JW
    J Neurophysiol; 2009 Nov; 102(5):2921-32. PubMed ID: 19741098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.