These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 14523069)

  • 21. Primary motor cortex involvement in initial learning during visuomotor adaptation.
    Riek S; Hinder MR; Carson RG
    Neuropsychologia; 2012 Aug; 50(10):2515-23. PubMed ID: 22781812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Learning-related fMRI activation associated with a rotational visuo-motor transformation.
    Graydon FX; Friston KJ; Thomas CG; Brooks VB; Menon RS
    Brain Res Cogn Brain Res; 2005 Mar; 22(3):373-83. PubMed ID: 15722208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A H(2)(15)O positron emission tomography study on mental imagery of movement sequences--the effect of modulating sequence length and direction.
    Boecker H; Ceballos-Baumann AO; Bartenstein P; Dagher A; Forster K; Haslinger B; Brooks DJ; Schwaiger M; Conrad B
    Neuroimage; 2002 Oct; 17(2):999-1009. PubMed ID: 12377173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct coordinate systems for adaptations of movement direction and extent.
    Poh E; Carroll TJ; de Rugy A
    J Neurophysiol; 2017 Nov; 118(5):2670-2686. PubMed ID: 28835524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generalisation between opposing visuomotor rotations when each is associated with visual targets and movements of different amplitude.
    Woolley DG; Carson RG; Tresilian JR; Riek S
    Brain Res; 2008 Jul; 1219():46-58. PubMed ID: 18541224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cerebral activation related to implicit sequence learning in a Double Serial Reaction Time task.
    van der Graaf FH; Maguire RP; Leenders KL; de Jong BM
    Brain Res; 2006 Apr; 1081(1):179-90. PubMed ID: 16533501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Task-specific internal models for kinematic transformations.
    Tong C; Flanagan JR
    J Neurophysiol; 2003 Aug; 90(2):578-85. PubMed ID: 12904486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contributions of spatial working memory to visuomotor learning.
    Anguera JA; Reuter-Lorenz PA; Willingham DT; Seidler RD
    J Cogn Neurosci; 2010 Sep; 22(9):1917-30. PubMed ID: 19803691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of visuomotor-map uncertainty on visuomotor adaptation.
    Saijo N; Gomi H
    J Neurophysiol; 2012 Mar; 107(6):1576-85. PubMed ID: 22190631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Striatal-cerebellar networks mediate consolidation in a motor sequence learning task: An fMRI study using dynamic causal modelling.
    Tzvi E; Stoldt A; Witt K; Krämer UM
    Neuroimage; 2015 Nov; 122():52-64. PubMed ID: 26244275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hemispheric asymmetry in memory-guided pointing during single-pulse transcranial magnetic stimulation of human parietal cortex.
    Vesia M; Monteon JA; Sergio LE; Crawford JD
    J Neurophysiol; 2006 Dec; 96(6):3016-27. PubMed ID: 17005619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transfer of sensorimotor adaptation between different movement categories.
    Abeele S; Bock O
    Exp Brain Res; 2003 Jan; 148(1):128-32. PubMed ID: 12478403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interpreting ambiguous visual information in motor learning.
    Dionne JK; Henriques DY
    J Vis; 2008 Nov; 8(15):2.1-10. PubMed ID: 19146286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cross talk in implicit assignment of error information during bimanual visuomotor learning.
    Kasuga S; Nozaki D
    J Neurophysiol; 2011 Sep; 106(3):1218-26. PubMed ID: 21653713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Knowledge of performance is insufficient for implicit visuomotor rotation adaptation.
    Peled A; Karniel A
    J Mot Behav; 2012; 44(3):185-94. PubMed ID: 22548697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensory recalibration of hand position following visuomotor adaptation.
    Cressman EK; Henriques DY
    J Neurophysiol; 2009 Dec; 102(6):3505-18. PubMed ID: 19828727
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Separate adaptive mechanisms for controlling trajectory and final position in reaching.
    Scheidt RA; Ghez C
    J Neurophysiol; 2007 Dec; 98(6):3600-13. PubMed ID: 17913996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of posterior parietal cortex in the recalibration of visually guided reaching.
    Clower DM; Hoffman JM; Votaw JR; Faber TL; Woods RP; Alexander GE
    Nature; 1996 Oct; 383(6601):618-21. PubMed ID: 8857536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation for reaching: a PET study of the participating structures in the human brain.
    Decety J; Kawashima R; Gulyás B; Roland PE
    Neuroreport; 1992 Sep; 3(9):761-4. PubMed ID: 1421133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural basis for the processes that underlie visually guided and internally guided force control in humans.
    Vaillancourt DE; Thulborn KR; Corcos DM
    J Neurophysiol; 2003 Nov; 90(5):3330-40. PubMed ID: 12840082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.