These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 14523094)

  • 1. Organization of the visual cortex in human albinism.
    Hoffmann MB; Tolhurst DJ; Moore AT; Morland AB
    J Neurosci; 2003 Oct; 23(26):8921-30. PubMed ID: 14523094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal retinotopic representations in human visual cortex revealed by fMRI.
    Morland AB; Baseler HA; Hoffmann MB; Sharpe LT; Wandell BA
    Acta Psychol (Amst); 2001 Apr; 107(1-3):229-47. PubMed ID: 11388137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental induction of an abnormal ipsilateral visual field representation in the geniculocortical pathway of normally pigmented cats.
    Schall JD; Ault SJ; Vitek DJ; Leventhal AG
    J Neurosci; 1988 Jun; 8(6):2039-48. PubMed ID: 3385488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population receptive field and connectivity properties of the early visual cortex in human albinism.
    Ahmadi K; Herbik A; Wagner M; Kanowski M; Thieme H; Hoffmann MB
    Neuroimage; 2019 Nov; 202():116105. PubMed ID: 31422172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal projections and functional architecture of cortical areas 17 and 18 in the tyrosinase-negative albino cat.
    Leventhal AG; Creel DJ
    J Neurosci; 1985 Mar; 5(3):795-807. PubMed ID: 2983049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abnormal ipsilateral visual field representation in areas 17 and 18 of hypopigmented cats.
    Ault SJ; Leventhal AG; Vitek DJ; Creel DJ
    J Comp Neurol; 1995 Apr; 354(2):181-92. PubMed ID: 7782497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abnormal visual projection in a human albino studied with functional magnetic resonance imaging and visual evoked potentials.
    Morland AB; Hoffmann MB; Neveu M; Holder GE
    J Neurol Neurosurg Psychiatry; 2002 Apr; 72(4):523-6. PubMed ID: 11909915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal abnormalities in human albinism translate into a reduction of grey matter in the occipital cortex.
    von dem Hagen EA; Houston GC; Hoffmann MB; Jeffery G; Morland AB
    Eur J Neurosci; 2005 Nov; 22(10):2475-80. PubMed ID: 16307590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of the striate-recipient zone of the cats lateralis posterior-pulvinar complex and its relations with the geniculostriate system.
    Berson DM; Graybiel AM
    Neuroscience; 1983 Jun; 9(2):337-72. PubMed ID: 6877598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberrant visual pathway development in albinism: From retina to cortex.
    Ather S; Proudlock FA; Welton T; Morgan PS; Sheth V; Gottlob I; Dineen RA
    Hum Brain Mapp; 2019 Feb; 40(3):777-788. PubMed ID: 30511784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of chiasma opticum malformations on the organization of the human ventral visual cortex.
    Kaule FR; Wolynski B; Gottlob I; Stadler J; Speck O; Kanowski M; Meltendorf S; Behrens-Baumann W; Hoffmann MB
    Hum Brain Mapp; 2014 Oct; 35(10):5093-105. PubMed ID: 24771411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinotopic organization of striate and extrastriate visual cortex in the mouse.
    Wagor E; Mangini NJ; Pearlman AL
    J Comp Neurol; 1980 Sep; 193(1):187-202. PubMed ID: 6776164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered visual population receptive fields in human albinism.
    Alvarez I; Smittenaar R; Handley SE; Liasis A; Sereno MI; Schwarzkopf DS; Clark CA
    Cortex; 2020 Jul; 128():107-123. PubMed ID: 32334151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-organisation in the human visual system--visuo-motor processing with congenitally abnormal V1 input.
    Wolynski B; Kanowski M; Meltendorf S; Behrens-Baumann W; Hoffmann MB
    Neuropsychologia; 2010 Nov; 48(13):3834-45. PubMed ID: 20863844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some neural connections subserving binocular vision in ungulates.
    Pettigrew JD; Ramachandran VS; Bravo H
    Brain Behav Evol; 1984; 24(2-3):65-93. PubMed ID: 6466965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study.
    Colby CL; Gattass R; Olson CR; Gross CG
    J Comp Neurol; 1988 Mar; 269(3):392-413. PubMed ID: 2453534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical and subcortical projections of the middle temporal area (MT) and adjacent cortex in galagos.
    Wall JT; Symonds LL; Kaas JH
    J Comp Neurol; 1982 Oct; 211(2):193-214. PubMed ID: 7174890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal central visual pathways in the brain of an albino green monkey (Cercopithecus aethiops).
    Guillery RW; Hickey TL; Kaas JH; Felleman DJ; Debruyn EJ; Sparks DL
    J Comp Neurol; 1984 Jun; 226(2):165-83. PubMed ID: 6330179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topographic organization of human visual areas in the absence of input from primary cortex.
    Baseler HA; Morland AB; Wandell BA
    J Neurosci; 1999 Apr; 19(7):2619-27. PubMed ID: 10087075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventral visual cortex in humans: cytoarchitectonic mapping of two extrastriate areas.
    Rottschy C; Eickhoff SB; Schleicher A; Mohlberg H; Kujovic M; Zilles K; Amunts K
    Hum Brain Mapp; 2007 Oct; 28(10):1045-59. PubMed ID: 17266106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.