BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 14523230)

  • 21. Regulation of transcription by 6S RNAs: insights from the Escherichia coli and Bacillus subtilis model systems.
    Steuten B; Hoch PG; Damm K; Schneider S; Köhler K; Wagner R; Hartmann RK
    RNA Biol; 2014; 11(5):508-21. PubMed ID: 24786589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A highly conserved 6S RNA structure is required for regulation of transcription.
    Trotochaud AE; Wassarman KM
    Nat Struct Mol Biol; 2005 Apr; 12(4):313-9. PubMed ID: 15793584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An mRNA structure in bacteria that controls gene expression by binding lysine.
    Sudarsan N; Wickiser JK; Nakamura S; Ebert MS; Breaker RR
    Genes Dev; 2003 Nov; 17(21):2688-97. PubMed ID: 14597663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Mutations altering the specificity of the sensor RNA encoded by the Bacillus subtilis pbuE gene].
    Lobanov KV; Korol'kova NV; Eremina SIu; Errais Lopes L; Proshkin SA; Mironov AS
    Genetika; 2007 Jun; 43(6):859-64. PubMed ID: 17853814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. tRNA determinants for transcription antitermination of the Bacillus subtilis tyrS gene.
    Grundy FJ; Collins JA; Rollins SM; Henkin TM
    RNA; 2000 Aug; 6(8):1131-41. PubMed ID: 10943892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter.
    Barrick JE; Sudarsan N; Weinberg Z; Ruzzo WL; Breaker RR
    RNA; 2005 May; 11(5):774-84. PubMed ID: 15811922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trans-translation mediated by Bacillus subtilis tmRNA.
    Ito K; Tadaki T; Lee S; Takada K; Muto A; Himeno H
    FEBS Lett; 2002 Apr; 516(1-3):245-52. PubMed ID: 11959141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Mg2+-dependent RNA tertiary structure forms in the Bacillus subtilis trp operon leader transcript and appears to interfere with trpE translation control by inhibiting TRAP binding.
    Schaak JE; Yakhnin H; Bevilacqua PC; Babitzke P
    J Mol Biol; 2003 Sep; 332(3):555-74. PubMed ID: 12963367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functionally uncoupled transcription-translation in Bacillus subtilis.
    Johnson GE; Lalanne JB; Peters ML; Li GW
    Nature; 2020 Sep; 585(7823):124-128. PubMed ID: 32848247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nucleotide sequence of the promoter region of the E. coli lysC gene.
    Cassan M; Ronceray J; Patte JC
    Nucleic Acids Res; 1983 Sep; 11(18):6157-66. PubMed ID: 6312411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leader region of the gene encoding DNA polymerase III of Bacillus subtilis.
    Sanjanwala B; Ganesan AT
    Mol Gen Genet; 1993 Jan; 236(2-3):374-8. PubMed ID: 7679775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the regulatory region of the lysC gene of Escherichia coli.
    Liao HH; Hseu TH
    FEMS Microbiol Lett; 1998 Nov; 168(1):31-6. PubMed ID: 9812360
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro structure-function studies of the Bacillus subtilis tyrS mRNA antiterminator: evidence for factor-independent tRNA acceptor stem binding specificity.
    Gerdeman MS; Henkin TM; Hines JV
    Nucleic Acids Res; 2002 Feb; 30(4):1065-72. PubMed ID: 11842119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism.
    Choonee N; Even S; Zig L; Putzer H
    Nucleic Acids Res; 2007; 35(5):1578-88. PubMed ID: 17289755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct and indirect control of Rho-dependent transcription termination by the
    Ghosh T; Jahangirnejad S; Chauvier A; Stringer AM; Korepanov AP; Côté JP; Wade JT; Lafontaine DA
    RNA; 2024 Mar; 30(4):381-391. PubMed ID: 38253429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovery of 20 novel ribosomal leader candidates in bacteria and archaea.
    Eckert I; Weinberg Z
    BMC Microbiol; 2020 May; 20(1):130. PubMed ID: 32448158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum.
    Kalinowski J; Cremer J; Bachmann B; Eggeling L; Sahm H; Pühler A
    Mol Microbiol; 1991 May; 5(5):1197-204. PubMed ID: 1956296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Mutation analysis of the purine operon leader region in Bacillus subtilis].
    Lobanov KV; korol'kova NV; Eremina SIu; Érrais Lopes L; Mironov AS
    Genetika; 2011 Jul; 47(7):890-9. PubMed ID: 21938952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Attenuation control of pyrG expression in Bacillus subtilis is mediated by CTP-sensitive reiterative transcription.
    Meng Q; Turnbough CL; Switzer RL
    Proc Natl Acad Sci U S A; 2004 Jul; 101(30):10943-8. PubMed ID: 15252202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Different processing of an mRNA species in Bacillus subtilis and Escherichia coli.
    Persson M; Glatz E; Rutberg B
    J Bacteriol; 2000 Feb; 182(3):689-95. PubMed ID: 10633102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.