BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 14523232)

  • 1. Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures.
    Barondeau DP; Putnam CD; Kassmann CJ; Tainer JA; Getzoff ED
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12111-6. PubMed ID: 14523232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding GFP chromophore biosynthesis: controlling backbone cyclization and modifying post-translational chemistry.
    Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED
    Biochemistry; 2005 Feb; 44(6):1960-70. PubMed ID: 15697221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation.
    Rosenow MA; Huffman HA; Phail ME; Wachter RM
    Biochemistry; 2004 Apr; 43(15):4464-72. PubMed ID: 15078092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation.
    Tubbs JL; Tainer JA; Getzoff ED
    Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus.
    Pletneva N; Pletnev V; Tikhonova T; Pakhomov AA; Popov V; Martynov VI; Wlodawer A; Dauter Z; Pletnev S
    Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1082-93. PubMed ID: 17881826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus sp. 2.
    Pakhomov AA; Martynov VI
    Biochemistry; 2007 Oct; 46(41):11528-35. PubMed ID: 17892303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The case of the missing ring: radical cleavage of a carbon-carbon bond and implications for GFP chromophore biosynthesis.
    Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED
    J Am Chem Soc; 2007 Mar; 129(11):3118-26. PubMed ID: 17326633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green fluorescent protein: structure, folding and chromophore maturation.
    Craggs TD
    Chem Soc Rev; 2009 Oct; 38(10):2865-75. PubMed ID: 19771333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation.
    Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED
    J Am Chem Soc; 2006 Apr; 128(14):4685-93. PubMed ID: 16594705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis.
    Wood TI; Barondeau DP; Hitomi C; Kassmann CJ; Tainer JA; Getzoff ED
    Biochemistry; 2005 Dec; 44(49):16211-20. PubMed ID: 16331981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular mechanics and database analysis of the structural preorganization and activation of the chromophore-containing hexapeptide fragment in green fluorescent protein.
    Branchini BR; Lusins JO; Zimmer M
    J Biomol Struct Dyn; 1997 Feb; 14(4):441-8. PubMed ID: 9172644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two independent routes of post-translational chemistry in fluorescent protein FusionRed.
    Muslinkina L; Pletnev VZ; Pletneva NV; Ruchkin DA; Kolesov DV; Bogdanov AM; Kost LA; Rakitina TV; Agapova YK; Shemyakina II; Chudakov DM; Pletnev S
    Int J Biol Macromol; 2020 Jul; 155():551-559. PubMed ID: 32243936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the Aequorea victoria green fluorescent protein.
    Ormö M; Cubitt AB; Kallio K; Gross LA; Tsien RY; Remington SJ
    Science; 1996 Sep; 273(5280):1392-5. PubMed ID: 8703075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization of a thiazoline-containing chromophore in an orange fluorescent protein, monomeric Kusabira Orange.
    Kikuchi A; Fukumura E; Karasawa S; Mizuno H; Miyawaki A; Shiro Y
    Biochemistry; 2008 Nov; 47(44):11573-80. PubMed ID: 18844376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutants of Discosoma red fluorescent protein with a GFP-like chromophore.
    Wiehler J; von Hummel J; Steipe B
    FEBS Lett; 2001 Jan; 487(3):384-9. PubMed ID: 11163363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction progress of chromophore biogenesis in green fluorescent protein.
    Zhang L; Patel HN; Lappe JW; Wachter RM
    J Am Chem Soc; 2006 Apr; 128(14):4766-72. PubMed ID: 16594713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic study of de novo chromophore maturation of fluorescent proteins.
    Iizuka R; Yamagishi-Shirasaki M; Funatsu T
    Anal Biochem; 2011 Jul; 414(2):173-8. PubMed ID: 21459075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative chemistry in the GFP active site leads to covalent cross-linking of a modified leucine side chain with a histidine imidazole: implications for the mechanism of chromophore formation.
    Rosenow MA; Patel HN; Wachter RM
    Biochemistry; 2005 Jun; 44(23):8303-11. PubMed ID: 15938620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Posttranslational reactions resulting in a long-wavelength shift in the spectra of asFP595 protein from Anemonia sulcata].
    Pakhomov AA; Tret'iakova IuA; Martynov VI
    Bioorg Khim; 2010; 36(1):117-21. PubMed ID: 20386585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Three-dimensional structure of yellow fluorescent protein zYFP538 from Zoanthus sp. at the resolution 1.8 angstrom].
    Pletneva NV; Pletnev SV; Chudakov DM; Tikhonova TV; Popov VO; Martynov VI; Wlodawer A; Dauter Z; Pletnev VZ
    Bioorg Khim; 2007; 33(4):421-30. PubMed ID: 17886433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.