These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 14523232)

  • 21. Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores.
    Pletnev S; Subach FV; Dauter Z; Wlodawer A; Verkhusha VV
    J Am Chem Soc; 2010 Feb; 132(7):2243-53. PubMed ID: 20121102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local complexity of amino acid interactions in a protein core.
    Jain RK; Ranganathan R
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):111-6. PubMed ID: 14684834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational analysis of the autocatalytic posttranslational cyclization observed in histidine ammonia-lyase. A comparison with green fluorescent protein.
    Donnelly M; Fedeles F; Wirstam M; Siegbahn PE; Zimmer M
    J Am Chem Soc; 2001 May; 123(20):4679-86. PubMed ID: 11457276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein.
    Wachter RM; Elsliger MA; Kallio K; Hanson GT; Remington SJ
    Structure; 1998 Oct; 6(10):1267-77. PubMed ID: 9782051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural evidence for an enolate intermediate in GFP fluorophore biosynthesis.
    Barondeau DP; Tainer JA; Getzoff ED
    J Am Chem Soc; 2006 Mar; 128(10):3166-8. PubMed ID: 16522096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mispacking and the Fitness Landscape of the Green Fluorescent Protein Chromophore Milieu.
    Banerjee S; Schenkelberg CD; Jordan TB; Reimertz JM; Crone EE; Crone DE; Bystroff C
    Biochemistry; 2017 Feb; 56(5):736-747. PubMed ID: 28074648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. zFP538, a yellow-fluorescent protein from Zoanthus, contains a novel three-ring chromophore.
    Remington SJ; Wachter RM; Yarbrough DK; Branchaud B; Anderson DC; Kallio K; Lukyanov KA
    Biochemistry; 2005 Jan; 44(1):202-12. PubMed ID: 15628861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity.
    Rekas A; Alattia JR; Nagai T; Miyawaki A; Ikura M
    J Biol Chem; 2002 Dec; 277(52):50573-8. PubMed ID: 12370172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein.
    Brejc K; Sixma TK; Kitts PA; Kain SR; Tsien RY; Ormö M; Remington SJ
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2306-11. PubMed ID: 9122190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural Determinants of Improved Fluorescence in a Family of Bacteriophytochrome-Based Infrared Fluorescent Proteins: Insights from Continuum Electrostatic Calculations and Molecular Dynamics Simulations.
    Feliks M; Lafaye C; Shu X; Royant A; Field M
    Biochemistry; 2016 Aug; 55(31):4263-74. PubMed ID: 27471775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Picosecond time-resolved fluorescence from blue-emitting chromophore variants Y66F and Y66H of the green fluorescent protein.
    Kummer AD; Wiehler J; Schüttrigkeit TA; Berger BW; Steipe B; Michel-Beyerle ME
    Chembiochem; 2002 Jul; 3(7):659-63. PubMed ID: 12325000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mechanism of oxidation in chromophore maturation of wild-type green fluorescent protein: a theoretical study.
    Ma Y; Sun Q; Smith SC
    Phys Chem Chem Phys; 2017 May; 19(20):12942-12952. PubMed ID: 28480935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulations of enhanced green fluorescent proteins: effects of F64L, S65T and T203Y mutations on the ground-state proton equilibria.
    Nifosì R; Tozzini V
    Proteins; 2003 May; 51(3):378-89. PubMed ID: 12696049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromophore formation in green fluorescent protein.
    Reid BG; Flynn GC
    Biochemistry; 1997 Jun; 36(22):6786-91. PubMed ID: 9184161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of the blue fluorescent protein with a Leu-Leu-Gly tri-peptide chromophore derived from the purple chromoprotein of Stichodactyla haddoni.
    Chang HY; Ko TP; Chang YC; Huang KF; Lin CY; Chou HY; Chiang CY; Tsai HJ
    Int J Biol Macromol; 2019 Jun; 130():675-684. PubMed ID: 30836182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wavelength mutations and posttranslational autoxidation of green fluorescent protein.
    Heim R; Prasher DC; Tsien RY
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12501-4. PubMed ID: 7809066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromophore formation in DsRed occurs by a branched pathway.
    Strack RL; Strongin DE; Mets L; Glick BS; Keenan RJ
    J Am Chem Soc; 2010 Jun; 132(24):8496-505. PubMed ID: 20509651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A resolution.
    Quillin ML; Anstrom DM; Shu X; O'Leary S; Kallio K; Chudakov DM; Remington SJ
    Biochemistry; 2005 Apr; 44(15):5774-87. PubMed ID: 15823036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution.
    Yarbrough D; Wachter RM; Kallio K; Matz MV; Remington SJ
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):462-7. PubMed ID: 11209050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the role of tryptophans in Aequorea victoria green fluorescent proteins with an expanded genetic code.
    Budisa N; Pal PP; Alefelder S; Birle P; Krywcun T; Rubini M; Wenger W; Bae JH; Steiner T
    Biol Chem; 2004 Feb; 385(2):191-202. PubMed ID: 15101562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.