BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 14523243)

  • 41. The proficiency of a thermophilic chorismate mutase enzyme is solely through an entropic advantage in the enzyme reaction.
    Zhang X; Bruice TC
    Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18356-60. PubMed ID: 16344484
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.
    Lassila JK; Keeffe JR; Kast P; Mayo SL
    Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computationally designed variants of Escherichia coli chorismate mutase show altered catalytic activity.
    Lassila JK; Keeffe JR; Oelschlaeger P; Mayo SL
    Protein Eng Des Sel; 2005 Apr; 18(4):161-3. PubMed ID: 15820980
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetic and biochemical identification of the chorismate mutase from Corynebacterium glutamicum.
    Li PP; Liu YJ; Liu SJ
    Microbiology (Reading); 2009 Oct; 155(Pt 10):3382-3391. PubMed ID: 19589834
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The influence of model building schemes and molecular dynamics sampling on QM-cluster models: the chorismate mutase case study.
    Agbaglo DA; Summers TJ; Cheng Q; DeYonker NJ
    Phys Chem Chem Phys; 2024 Apr; 26(16):12467-12482. PubMed ID: 38618904
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural evolution of differential amino acid effector regulation in plant chorismate mutases.
    Westfall CS; Xu A; Jez JM
    J Biol Chem; 2014 Oct; 289(41):28619-28. PubMed ID: 25160622
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of active site residues of chorismate mutase-prephenate dehydrogenase from Escherichia coli.
    Christendat D; Turnbull J
    Biochemistry; 1996 Apr; 35(14):4468-79. PubMed ID: 8605196
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mapping enzymatic catalysis using the effective fragment molecular orbital method: towards all ab initio biochemistry.
    Steinmann C; Fedorov DG; Jensen JH
    PLoS One; 2013; 8(4):e60602. PubMed ID: 23593259
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Substrate conformational transitions in the active site of chorismate mutase: their role in the catalytic mechanism.
    Guo H; Cui Q; Lipscomb WN; Karplus M
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9032-7. PubMed ID: 11481470
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms of enzymatic and acid-catalyzed decarboxylations of prephenate.
    Hermes JD; Tipton PA; Fisher MA; O'Leary MH; Morrison JF; Cleland WW
    Biochemistry; 1984 Dec; 23(25):6263-75. PubMed ID: 6395898
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of the enzymatic mechanism of the yeast chorismate mutase by docking a transition state analog.
    Lin SL; Xu D; Li A; Rosen M; Wolfson HJ; Nussinov R
    J Mol Biol; 1997 Sep; 271(5):838-45. PubMed ID: 9299331
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The shikimate pathway. Part V. Chorismic acid and chorismate mutase.
    Ife RJ; Ball LF; Lowe P; Haslam E
    J Chem Soc Perkin 1; 1976; (16):1776-83. PubMed ID: 987064
    [No Abstract]   [Full Text] [Related]  

  • 53. Molecular Determinants for Rate Acceleration in the Claisen Rearrangement Reaction.
    Brickel S; Meuwly M
    J Phys Chem B; 2019 Jan; 123(2):448-456. PubMed ID: 30540184
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preorganization and reorganization as related factors in enzyme catalysis: the chorismate mutase case.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Chemistry; 2003 Feb; 9(4):984-91. PubMed ID: 12584715
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction.
    Ishida T
    J Am Chem Soc; 2010 May; 132(20):7104-18. PubMed ID: 20426479
    [TBL] [Abstract][Full Text] [Related]  

  • 56. pH Dependence of catalysis by Pseudomonas aeruginosa isochorismate-pyruvate lyase: implications for transition state stabilization and the role of lysine 42.
    Olucha J; Ouellette AN; Luo Q; Lamb AL
    Biochemistry; 2011 Aug; 50(33):7198-207. PubMed ID: 21751784
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temperature dependence of the structure of the substrate and active site of the Thermus thermophilus chorismate mutase E x S complex.
    Zhang X; Bruice TC
    Biochemistry; 2006 Jul; 45(28):8562-7. PubMed ID: 16834330
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A glutamate residue in the catalytic center of the yeast chorismate mutase restricts enzyme activity to acidic conditions.
    Schnappauf G; Sträter N; Lipscomb WN; Braus GH
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8491-6. PubMed ID: 9238004
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of chorismate mutase catalysis by QM/MM modelling of enzyme-catalysed and uncatalysed reactions.
    Claeyssens F; Ranaghan KE; Lawan N; Macrae SJ; Manby FR; Harvey JN; Mulholland AJ
    Org Biomol Chem; 2011 Mar; 9(5):1578-90. PubMed ID: 21243152
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An N-terminal protein degradation tag enables robust selection of highly active enzymes.
    Butz M; Neuenschwander M; Kast P; Hilvert D
    Biochemistry; 2011 Oct; 50(40):8594-602. PubMed ID: 21916414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.