BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 14523326)

  • 1. Effect of ionic strength of buffer on the measurement of erythrocyte electrophoretic mobility.
    Ertan NZ; Rampling MW
    Med Sci Monit; 2003 Oct; 9(10):BR378-81. PubMed ID: 14523326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of ionic strength on the electrophoretic mobility and protonation constants of an EPS-producing bacterial strain.
    Tourney J; Ngwenya BT
    J Colloid Interface Sci; 2010 Aug; 348(2):348-54. PubMed ID: 20546767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of ionic strength and background electrolyte on pH measurements in metal ion adsorption experiments.
    Wiesner AD; Katz LE; Chen CC
    J Colloid Interface Sci; 2006 Sep; 301(1):329-32. PubMed ID: 16765363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the electrophoretic mobility of chromosomes by free flow electrophoresis. I. Morphology and stability.
    Bier FF; Bettag U; Rheingans T; Adrian H; Barths J; Hausmann M; Bühring HJ; Rohwer P; Dölle J; Cremer C
    Electrophoresis; 1989 Oct; 10(10):690-7. PubMed ID: 2612466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of electrophoretic mobilities of proteins and peptides with their physicochemical properties.
    Basak SK; Ladisch MR
    Anal Biochem; 1995 Mar; 226(1):51-8. PubMed ID: 7785779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic behaviors of human hepatoma HepG2 cells.
    Hsu JP; Ku MH; Yang LC; Lu JN; Young TH; Tseng S
    Electrophoresis; 2009 May; 30(9):1531-7. PubMed ID: 19425010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of ionic strength on cell volume, cell pH and cellular buffer capacity in human red blood cells.
    Dalmark M
    Acta Biol Med Ger; 1981; 40(6):757-63. PubMed ID: 7324706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free flow cell electrophoresis using zwitterionic buffer.
    Rodkey LS
    Appl Theor Electrophor; 1990; 1(5):243-7. PubMed ID: 2099180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliable electrophoretic mobilities free from Joule heating effects using CE.
    Evenhuis CJ; Hruska V; Guijt RM; Macka M; Gas B; Marriott PJ; Haddad PR
    Electrophoresis; 2007 Oct; 28(20):3759-66. PubMed ID: 17941134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of cation binding to the adenosine nucleotides using the variable ionic strength method: validation of the Debye-Hückel-Onsager theory of electrophoresis in the absence of counterion binding.
    Stellwagen E; Stellwagen NC
    Electrophoresis; 2007 Apr; 28(7):1053-62. PubMed ID: 17295422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standard systems for measurement of pK values and ionic mobilities: 2. Univalent weak bases.
    Slampová A; Krivánková L; Gebauer P; Bocek P
    J Chromatogr A; 2009 Apr; 1216(17):3637-41. PubMed ID: 19168181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of monascus pigment derivatives on the electrophoretic mobility of bacteria, and the cell adsorption and antibacterial activities of pigments.
    Kim C; Jung H; Kim JH; Shin CS
    Colloids Surf B Biointerfaces; 2006 Feb; 47(2):153-9. PubMed ID: 16423514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracting information from the ionic strength dependence of electrophoretic mobility by use of the slope plot.
    Ibrahim A; Allison SA; Cottet H
    Anal Chem; 2012 Nov; 84(21):9422-30. PubMed ID: 23051144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Standard systems for measurement of pKs and ionic mobilities. 1. Univalent weak acids.
    Slampová A; Krivánková L; Gebauer P; Bocek P
    J Chromatogr A; 2008 Dec; 1213(1):25-30. PubMed ID: 18799163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of electrophoretic mobilities. 3. Effect of ionic strength in capillary zone electrophoresis.
    Li D; Fu S; Lucy CA
    Anal Chem; 1999 Feb; 71(3):687-99. PubMed ID: 21662723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Ionic Strength on the Initial Dynamics of Flocculation of Polystyrene Latex with Polyelectrolyte.
    Matsumoto T; Adachi Y
    J Colloid Interface Sci; 1998 Aug; 204(2):328-35. PubMed ID: 9698411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bovine red blood cell starvation age discrimination through a glutaraldehyde-amplified dielectrophoretic approach with buffer selection and membrane cross-linking.
    Gagnon Z; Gordon J; Sengupta S; Chang HC
    Electrophoresis; 2008 Jun; 29(11):2272-9. PubMed ID: 18548460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanism of stomatocyte-echinocyte transformations of red blood cells: experiment and theoretical model.
    Tachev KD; Danov KD; Kralchevsky PA
    Colloids Surf B Biointerfaces; 2004 Mar; 34(2):123-40. PubMed ID: 15261082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid-base titrations of functional groups on the surface of the thermophilic bacterium Anoxybacillus flavithermus: comparing a chemical equilibrium model with ATR-IR spectroscopic data.
    Heinrich HT; Bremer PJ; Daughney CJ; McQuillan AJ
    Langmuir; 2007 Feb; 23(5):2731-40. PubMed ID: 17243732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative theory of electroosmotic flow in fused-silica capillaries using an extended site-dissociation--site-binding model.
    Zhou MX; Foley JP
    Anal Chem; 2006 Mar; 78(6):1849-58. PubMed ID: 16536420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.